首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
尿素和甲酰胺塑化热塑性淀粉   总被引:17,自引:0,他引:17  
用甲酰胺和尿素作为塑化剂制备了热塑性淀粉 (TPS) .扫描电镜显示甲酰胺和尿素混合物可以使淀粉塑化 ,形成均一的连续相 ;根据FT IR谱图可以确定 ,与甘油相比 ,甲酰胺可以使热塑性淀粉体系在保存时更稳定 ,各基团的化学环境变化更小 ,这是由于甲酰胺可以和淀粉羟基形成更稳定的氢键 .X ray衍射说明甲酰胺和尿素 (重量比为 10 % 2 0 % )作为混合塑化剂可以有效抑制淀粉的回生 ,同时防止尿素结晶析出 .在RH=33%的湿度环境保存 1周 ,这种热塑性淀粉有良好的拉伸强度、伸长率和断裂能 ,分别达到 4 83MPa ,10 4 6 %和 2 17N·m .水含量对热塑性淀粉的力学性能的影响也被研究 .另外 ,热失重实验和吸水实验说明这种热塑性淀粉的热稳定性和耐水性也要优于常用的甘油塑化热塑性淀粉  相似文献   

2.
热塑性淀粉中氢键及其对性能的影响   总被引:11,自引:0,他引:11  
马骁飞  于九皋 《化学学报》2004,62(12):1180-1184,MJ06
热塑性淀粉中的氢键对热塑性淀粉的性能有决定性的作用.本文利用红外光谱分析甘油或甲酰胺塑化热塑性淀粉中塑化剂和淀粉间的氢键形成情况,发现在淀粉中,与塑化剂形成氢键的主要是C-O-C基团中的氧原子和C-O-H基团中的氢原子;而且过量的塑化剂之间会形成氢键,减弱塑化剂与C-O-C中氧原子的氢键作用.与甘油相比,甲酰胺可以和淀粉形成更稳定的氢键.X-ray衍射研究了氢键对两种热塑性淀粉在不同湿度环境下的回生性能的影响.结果表明甲酰胺可以有效抑制淀粉回生.热动态力学分析(DMTA)研究发现,氢键使甲酰胺塑化热塑性淀粉的玻璃化转变温度更低.氢键使甲酰胺塑化热塑性淀粉强度和杨氏模量低,但伸长率和断裂能大.  相似文献   

3.
热塑性淀粉/蒙脱石复合材料性能研究   总被引:2,自引:0,他引:2  
用柠檬酸活化蒙脱石(CMMT),用尿素和甲酰胺塑化热塑性淀粉(UFTPS),制备了热塑性淀粉/蒙脱石(UFTPS/CMMT)复合材料.广角X-ray衍射(WAXD)、透射电子显微镜(TEM)表明,UFTPS和CMMT形成复合材料.CMMT质量分数2%~10%时,将复合材料在相对湿度50%(RH=50%)的环境下保存10 d,力学测试得出,复合材料的最大拉伸应力达到24.86 MPa,应变为134.50%,杨氏模量和断裂活化能分别由UFTPS的87.25MPa,1.87 N.m上升到复合材料625.25 MPa,2.45 N.m;可以看出,和纯UFTPS相比,复合材料强度明显提高;流变行为研究得出,通过改变加工温度和螺杆挤出机速度可以调整复合材料的流变行为;与传统的甘油体系相比,复合材料很好的抑制了材料长时间放置的结晶行为;并且该材料比纯UFTPS具有很好的耐水性能和热稳定性.  相似文献   

4.
以乙二醇二缩水甘油醚(GDE)为偶联剂,将胍盐低聚物(PHMG)接枝到淀粉上,形成淀粉接枝物(Starch-g-PHMG)。然后,将一定比例的Starch-g-PHMG与淀粉-丙烯酸接枝共聚物共混,制备了抗菌水凝胶敷料(AHD)。通过红外光谱(FT-IR)、元素分析确定了Starch-g-PHMG的分子结构;通过吸液测试、抗菌测试表征了AHD的理化性能。结果表明:在反应温度为60°C,反应时间为3h,w(NaOH)=0.4%时,Starch-g-PHMG中PHMG的接枝效率最高,可达37.5%;AHD的吸液率随着Starch-g-PHMG含量的增加而减少;当w(PHMG)0.33%时,AHD对金黄色葡萄球菌与大肠杆菌的抑菌率可以达到100%。  相似文献   

5.
为提高聚乳酸(PLA)/淀粉共混物界面作用和降低成本,引入甲基丙烯酸缩水甘油酯(GMA)接枝聚乳酸和塑化淀粉(TPS),通过挤出和注射成型制备接枝聚乳酸/塑化淀粉共混物(PLA-g-GMA/TPS)。红外光谱分析证实,GMA成功接枝到PLA分子链上。对共混物的力学性能、热机械性能、微观形貌、热性能及亲水性等进行了系统研究,结果表明,选择GMA用量为6%(接枝率为1.51%)和TPS用量为10%时的拉伸强度、断裂伸长率及弹性模量最佳,分别为42.6MPa、8.9%及260MPa。FE-SEM观察结果表明,低含量TPS中颗粒被基体包覆或嵌入,界面平整,界面结合力强。DMA和DSC结果显示,不同质量配比的PLA-g-6%GMA/TPS共混物的Tg、储存模量、结晶度、结晶温度及熔融温度仅在小范围内发生变化。吸水率和接触角结果表明,低含量TPS的共混物吸水率和接触角变化幅度均小于高含量TPS体系。  相似文献   

6.
利用鲁氏毛霉(Mucor rouxii)3.2545发酵产生壳聚糖,然后用氯磺酸/甲酰胺方法对壳聚糖进行硫酸酯化,当底物壳聚糖用量为1g时,其最佳反应条件为:10mL甲酰胺中氯磺酸添加量为3.0mL;反应温度为70℃;反应时间为3.Oh.其中反应温度对反应的影响最大.在最适反应条件下,壳聚糖硫酸酯的硫含量可以达到16.04%.通过红外光谱分析,发现壳聚糖已经成功地被硫酸酯化,而且结构与肝素相似.此外,所得产物还具有抗凝血和抗血栓的性质,其抗血栓的性质优于肝素.  相似文献   

7.
利用基于拉伸力场主导作用下的叶片塑化挤出机分别制备硫酸钙晶须(CSW)含量为0、5%(wt)、10%(wt)、15%(wt)、20%(wt)的硫酸钙晶须(CSW)/PBS复合材料,并讨论了CSW的含量对复合材料力学性能、热稳定性、结晶性能的影响。测试结果表明:当CSW的添加量为PBS的15%(wt)时,复合材料的综合力学性能最优,拉伸模量,弯曲模量和弯曲强度分别提高;随着CSW含量的增加,球晶尺寸减小,成核密度增加,结晶温度也有显著提高;引入CSW对PBS的熔融行为没有影响;热失重分析表明CSW有助于提高复合材料的热稳定性。  相似文献   

8.
Cu-Mg/Al复合氧化物催化碳颗粒物燃烧性能的研究   总被引:5,自引:0,他引:5  
恒定二价与三价阳离子比为3(nM2+/nM3+=3),采用共沉淀法制备不同Cu含量的系列水滑石前驱物, 800 ℃焙烧4 h形成复合氧化物(CuO质量百分数分别为0%、5%、10%、15%、20%、30%、40%)用作柴油车排放碳颗粒物燃烧的催化剂,并采用XRD、BET、TG-DSC、FT-IR、TPR等表征手段研究了Cu、Mg含量对材料前驱物物化性能的影响及对其衍生复合氧化物催化碳颗粒物燃烧性能的影响.结果表明,Cu、Mg含量对材料的热稳定性、比表面和催化氧化活性有显著的影响. Mg有助于提高催化剂的热稳定性; Cu含量增加,催化剂比表面下降,但比表面不是影响催化剂活性的主要因素. CuO含量为15%时,催化剂具有最好的催化活性和稳定性,碳颗粒物的起燃温度(T10)和半转化温度(T50)分别为336 ℃和409 ℃.在CuO含量≤30%时可以形成结构完整的水滑石前驱物, CuO含量为40%时出现Cu(OH)2杂相; CuO含量< 20%时,经高温焙烧可得到均匀的复合氧化物, CuO含量≥20%时出现CuO偏析. TPR结果表明焙烧温度和复合氧化物的组成决定了材料的可还原性能.  相似文献   

9.
新型热塑性淀粉的制备和性能   总被引:10,自引:0,他引:10  
以二甲基亚砜(DMSO)为增塑剂, 通过熔融共混法制备了一种新型热塑性淀粉(TPS), 研究不同增塑剂含量对材料结构和性能的影响, 并与甘油及甘油/水复合增塑淀粉体系进行了比较. FTIR结果显示, DMSO能够与淀粉产生强烈而稳定的氢键相互作用. WAXD和SEM的研究结果表明, DMSO的加入破坏了淀粉的有序结构, 实现了淀粉的塑化, 形成均一的非晶连续相. 同甘油及甘油/水增塑体系相比, DMSO与淀粉的羟基形成更为稳定的氢键, 能够有效抑制淀粉的重结晶. 动态力学和拉伸力学性能测试结果表明, 经过DMSO的增塑, 有效降低了淀粉的玻璃化转变温度, 改善了材料的韧性, 增塑效率要好于甘油及甘油/水复合增塑体系.  相似文献   

10.
以环己烷为油相、淀粉乳液为水相、Span60和Tween60为乳化剂, 用耗散粒子动力学(DPD)方法研究了淀粉乳液形成过程及油水比、乳化剂用量等因素对淀粉乳液形成的影响. 结果表明, 模拟6000步时, 体系达到平衡状态; 乳滴的粒径随乳化剂含量的增加先减小而后增加, 随淀粉含量的增加而增加, 随环己烷含量的减小而增加; 形成稳定淀粉乳液体系的参数范围: 7<油水比≤20, 9%<乳化剂用量≤18%. 实验结果表明, 乳化剂含量为11%~15%时, 微球的粒径随乳化剂含量的增大而减小; 乳化剂含量大于15%时, 微球的粒径反而增大. 实验与模拟的结果吻合.  相似文献   

11.
In this paper, formamide was firstly used as plasticizer to prepare thermoplastic starch (TPS), which could suppress the retrogradation of TPS by X-ray diffractometry (XRD) and show a good flexibility, but was weaker than conventional glycerol-plasticized TPS (GPTPS). When urea was introduced into plasticizer, both the retrogradation and mechanical properties were ameliorated. The tensile stress, strain and energy break of TPS plasticized by urea (wt. 20%) and formamide (wt.10%), respectively, reached 4.83 MPa, 104.6 % and 2.17 N-m (Newton-meter) after it had been stored at relative humidity (RH) 30% for one week.  相似文献   

12.
In this paper,aliphatic amidediol was synthesized and mixed with glycerol used as a plasticizer for preparing thermoplastic starch(AGPTPS).The yield of aliphatic amidediol was 91%.FF-IR expressed that the mixture of aliphatic amidediol and glycerol formed stronger and stable hydrogen bond with starch molecules compared to the native cornstarch.By scanning electron microscope(SEM)native cornstarch granules were proved to transfer to a homogeneous continuous system.After being stored for a period time at room temperature,the mechanical properties of AGPTPS were also studied.As a mixed plasticizer,aliphatic amidediol and glycerol would be practical to extend TPS application scopes.  相似文献   

13.
A biodegradable thermoplastic starch (TPS) was successfully prepared from plasticizer ethanolamine and native cornstarch. The hydrogen bonding interaction between starch and ethanolamine was investigated using Fourier transform infrared (FT‐IR). When the ethanolamine mass content was 30%, after the ethanolamine‐plasticized thermoplastic starch (ETPS) was stored at RH 50% for 14 days, the mechanical testing showed that the maximum tensile stress of the ETPS reached 5.98 MPa, the tensile strain reached 106.52%, Young's modulus increased from 38.14 MPa of glycerol‐plasticized thermoplastic starch (GTPS) to 75.32 MPa of ETPS, and the breaking energy increased from 1.921 N·m to 2.305 N·m, which indicated that the mechanical properties of ETPS evidently excelled those of the GTPS. The effects of water contents on the mechanical properties of ETPS and GTPS were studied. A differential scanning calorimetry (DSC) analysis revealed that the low‐temperature transition and the glass transition temperature (Tg) of the ETPS were ?58 and 22°C respectively, which were lower than that of the GTPS. The ETPS effectively restrained the re‐crystallization of traditional GTPS, which was proved by the X‐ray diffraction (XRD). The scanning electron microscopy (SEM) images presented that ethanolamine made starch uniform. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Blends of biodegradable polymers polylactic acid/thermoplastic starch/polyhydroxybutyrate (PLA/TPS/PHB) were prepared using a twin-screw extruder. The TPS content was constant (50 %) and the PHB content in the blends was gradually changed from 0 mass % to 20 mass %. TPS was prepared by melting, where a mixture of native starch, water and glycerol was fed into the twinscrew extruder. Average temperature of extrusion was 180°C and the concentration of glycerol was 40 mass %. Influence of the PHB concentration in the blend and that of the processing technology on the mechanical and rheological properties of the PLA/PHB composition containing TPS were studied. Mechanical properties were measured 24 h after the film and monofilament preparation and also after the specific storage time to study the effect of storage on the properties. The results indicate that differences in morphology strongly influence the mechanical properties of the studied materials with identical material composition.  相似文献   

15.
Polylactic acid (PLA) and thermoplastic starch (TPS) are known as bio‐based and biodegradable thermoplastic polymers that can be used in different applications owing to their inherent physical and mechanical properties. In order to reduce the higher costs of PLA and tuning its physical and mechanical properties suitable for short life packaging applications, blending of PLA with the TPS, more economical biodegradable polymer, has been considered in academic and industrial researches. However, melt blending of PLA with TPS without compatibilization process caused some drawbacks such as coarsening morphology and declining mechanical properties and ductility because of thermodynamic immiscibility, which may restrict its usage in packaging applications. Subsequently, our approach in this research is compatibilization of PLA/TPS blends by utilization of primary well tuning of TPS formulation with a combination of sorbitol and glycerol plasticizers. In this work, the wide composition range of melt mixed PLA/TPS blends was prepared using a laboratory twin screw extruder. The effects of microstructure on the rheological and mechanical properties of PLA/TPS blends were studied using different methods such as scanning electron microscopy (SEM) images, contact angle, oscillatory shear rheological measurements, and tensile and impact strength mechanical tests. The rheological and mechanical properties were interpreted according to the morphological features and considering the possibility of plasticizer migration from TPS to PLA phase during melt blending. Reduction in complex viscosity and storage modulus of PLA matrix samples indicates the improved melt processability of blends. Finally, in comparison with mechanical results reported in literature, our simple approach yielded the blends with elastic modulus and ductility comparable with those of chemically compatibilized PLA/TPS blends.  相似文献   

16.
TPS was a biodegradable material based on starch. Starch was an inexpensive and natural renewable polysaccharide, which was widely investigated as the substitute of petroleum-derived plastics. Native starch commonly existed in granule structure with about…  相似文献   

17.
Starch is one of the most promising natural polymers to be abundant, cheap and biodegradable. To get thermoplastic starch (TPS) is necessary mechanical shake, high temperature and use of plasticizers. In this work, TPS films were prepared by casting from cassava starch and three different vegetable oils of Brazilian Cerrado as plasticizer: buriti, macauba and pequi. The materials were analyzed by TG, DSC and TMA. Thermal properties of oils depend on their chemical structures. Starch and vegetable oils are natural resources that can be used how alternative to producing materials that cause minor environmental impact.  相似文献   

18.
Summary: Thermoplastic starches (TPS) based on cassava starch have been produced by extrusion at 120 °C, using glycerol as plasticizer. Three forms of cassava starch were employed, viz: cassava root (CR), cassava bagasse (CB) and purified cassava starch (PCS). The main differences between these are the presence of sugars and a few fibres in CR and high fibre concentration in CB. Conditions of processing and characteristics such as amylose and fibre content, crystallinity, water absorption and mechanical behaviour in the tension x deformation test were evaluated. The results demonstrated that the PCS and CR had amylose contents consistent with literature values (14–18%) and that CB is a material constituted mainly by amylopectin. It was found that fibres in high proportions (as in the bagasse) can confer reinforcement properties and are thus able to generate natural composites of TPS with cellulose fibre. The sugars naturally found in the root reduce the elongation of the TPS under tension. The PCS and CR TPS were stable with respect to indices of crystallinity after processing; and during a period of 90 d in a relative humidity of 53%, while the CB TPS tended to vary its crystallinity, probably because its amylose chain had low degree of polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号