首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  国内免费   5篇
化学   7篇
力学   1篇
数学   1篇
物理学   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
在四氢呋喃(THF)与环己烷的混合溶剂中,以正丁基锂(n-BuLi)为引发剂,采用具有较大空间位阻和特定电荷环境的P配合物为添加剂,实现了异戊二烯(Ip)和甲基丙烯酸甲酯(MMA)的阴离子嵌段共聚。分别采用GPC、^1H—NMR对聚合物的结构进行了分析表征。结果表明:随着THF与环己烷体积比的增大,单体的转化率呈现下降的趋势;同时空间位阻较大的P配合物的加入,堵塞了正、负离子对之间的部分通道,有效地抑制了MMA段聚合副反应的发生,在易于工业化的0℃之下成功合成了分子量分布窄(1.21)的聚异戊二烯一聚甲基丙烯酸甲酯嵌段共聚物(PI—b—PMMA),并且共聚物中PI嵌段以3,4结构链节为主。  相似文献   
2.
Gappy POD 是一种基于本征正交分解(proper orthogonal decomposition, POD)的数据重构方法. 本文研究了gappy POD在湍流数据重构中的应用, 主要关注了以下两个因素的影响: 第一, 数据本身的复杂程度, 即构成流场的POD模态数量; 第二, 破损区域的面积大小和几何形状. 考虑到上述因素, 本文重新严格地表述了gappy POD的重构过程, 并推导出gappy POD重构误差的公式. 论文选取旋转湍流数据为案例进行了gappy POD重构的研究, 并解释了构成gappy POD重构误差的两个部分. 第一部分来自流场POD展开的截断误差, 该截断误差会被POD基函数在已知点上的值组成的矩阵的最小特征值放大. 这部分误差主要取决于流场的复杂程度, 当流场复杂程度较低时, 相应误差随采用的POD模态数目增大而减小. 当流场复杂程度较高时, 很小的POD截断误差也会导致很大的重构误差, 此时需要采用流场所有的POD模态进行重构以消除截断误差. 重构误差的第二部分来自POD基函数在已知点上的值组成的矩阵的非列满秩性, 它主要取决于破损区域的面积大小和几何形状. 破损区域的面积越大, 或者破损面积相同时, 破损区域内信息所包含的相关性越大, 第二部分的重构误差越大.   相似文献   
3.
通过对正丁基锂(n-BuLi)/四氢呋喃(THF)引发α-甲基苯乙烯(mSt)负离子本体聚合,验证了n-BuLi缔合体可以引发聚合,形成超分子团聚体,然后在进一步聚合过程中超分子解离.证实了先前提出的负离子聚合的引发机理.通过7Li-NMR对聚合过程的在线检测,进一步证实了mSt在氘代苯为溶剂,THF为调节剂下的负离子聚合以及异戊二烯在非极性条件下的溶液聚合都存在引发剂多元缔合体向二元缔合体转变.研究还发现,少量THF可能使n-BuLi的六元缔合结构2~3个进一步串联起来,但先于六元缔合结构解离.此外,THF与n-BuLi作用,随着n-BuLi/THF的摩尔比从1∶1到1∶5的变化,可以使n-BuLi的巨大缔合体解离并向六元缔合体转变.  相似文献   
4.
利用2-苯基吡啶及其衍生物为主配体、四苯基膦酰亚胺为辅助配体合成了3个铱配合物Ir(ppy)2tpip(Hppy:2-苯基吡啶,Htpip:四苯基膦酰亚胺)、Ir(npy)2tpip(Hnpy:2-(1-萘基)吡啶)和Ir(pnpy)2tpip(Hpnpy:2-(9-菲基)吡啶)。它们的结构通过1HNMR和MALDI-TOF质谱进行了表征,其中配合物Ir(ppy)2tpip还进一步通过晶体结构分析验证。主配体从苯环到萘环和菲环的改变增加了配合物的π共轭,减小了能级差,导致了3种配合物的磷光发射光谱从516nm红移到600和633nm(从绿光到红光),发光量子效率也从0.36增加到0.51和0.53。从量化计算的结果可以看出,这种共轭效应增加了主配体的电子密度,提高了配合物的LUMO能级。配合物结构和发射性质之间的关系规律为设计不同发光颜色的铱配合物提供了思路。  相似文献   
5.
利用2-苯基吡啶及其衍生物为主配体、四苯基膦酰亚胺为辅助配体合成了3个铱配合物Ir(ppy)2tpip(Hppy:2-苯基吡啶,Htpip:四苯基膦酰亚胺)、Ir(npy)2tpip(Hnpy:2-(1-萘基)吡啶)和Ir(pnpy)2tpip(Hpnpy:2-(9-菲基)吡啶)。它们的结构通过1H NMR和MALDI-TOF质谱进行了表征,其中配合物Ir(ppy)2tpip还进一步通过晶体结构分析验证。主配体从苯环到萘环和菲环的改变增加了配合物的π共轭,减小了能级差,导致了3种配合物的磷光发射光谱从516 nm红移到600和633 nm(从绿光到红光),发光量子效率也从0.36增加到0.51和0.53。从量化计算的结果可以看出,这种共轭效应增加了主配体的电子密度,提高了配合物的LUMO能级。配合物结构和发射性质之间的关系规律为设计不同发光颜色的铱配合物提供了思路。  相似文献   
6.
以乙二醇二缩水甘油醚(GDE)为偶联剂,将胍盐低聚物(PHMG)接枝到淀粉上,形成淀粉接枝物(Starch-g-PHMG)。然后,将一定比例的Starch-g-PHMG与淀粉-丙烯酸接枝共聚物共混,制备了抗菌水凝胶敷料(AHD)。通过红外光谱(FT-IR)、元素分析确定了Starch-g-PHMG的分子结构;通过吸液测试、抗菌测试表征了AHD的理化性能。结果表明:在反应温度为60°C,反应时间为3h,w(NaOH)=0.4%时,Starch-g-PHMG中PHMG的接枝效率最高,可达37.5%;AHD的吸液率随着Starch-g-PHMG含量的增加而减少;当w(PHMG)0.33%时,AHD对金黄色葡萄球菌与大肠杆菌的抑菌率可以达到100%。  相似文献   
7.
李天一  孟维思  潘攀  蔡军  邬显平  冯进军  闫铁昌 《强激光与粒子束》2019,31(12):123101-1-123101-5
随着太赫兹技术的发展,高频率、大功率的太赫兹辐射源一直是国内外研究的热点。再生反馈振荡器作为一种新型太赫兹源器件,具有可行性高、功率大的优点。基于0.8 THz太赫兹波成像系统的需求,采用折叠波导慢波结构,对再生反馈振荡器进行设计与研究。首先对0.8 THz折叠波导慢波结构进行设计并使用CST微波工作室中的本征模求解器进行参数优化,再通过CST粒子工作室中的PIC仿真模块对整管进行热特性仿真,验证了方案的可行性,仿真结果显示,最终可产生60 mW的稳定输出信号。  相似文献   
8.
在四氢呋喃(THF)与环己烷的混合溶剂中,以正丁基锂(n-BuLi)为引发剂,选取P配合物(Pcomplex)为调节剂,实现了异戊二烯(Ip)的负离子可控聚合,得到了高3,4结构率的聚异戊二烯(PI)(78.76%).采用1H-NMR对聚合物的结构进行了表征和分析.证实了由n-BuLi引发的负离子聚合,单体插入离子对之间参与聚合的速率及聚合结构取决于正负离子对之间的尺度,该尺度与单体插入所需求的尺度相当时,插入聚合速率最快,最容易.对Ip而言,单体插入离子对之间聚合形成3,4-PI时需求的尺度最小.Pcomplex由于其同时含有与Li+同源的锂原子以及空间位阻较大的苯、萘、蒽等基团,可通过改变活性种正负离子对之间的通道尺度,有效地促进3,4聚合反应,抑制1,2和1,4聚合反应,因而有效提高了PI 3,4结构率,使得Ip的聚合变得可控.相反,升高温度可以增加正负离子对之间的尺度,使得3,4聚合结构含量减少,1,4聚合结构含量增加,但温度越高,反式含量越多.  相似文献   
9.
混凝土内部微细观结构影响其损伤和破坏行为.鉴于传统连续介质力学在模拟混凝土损伤累积和渐进破坏过程中存在的问题,基于数值图像技术获得混凝土试件的内部骨料形态,采用键型近场动力学理论,建立了能够考虑混凝土非均质特性的近场动力学模型,并在ABAQUS平台下开发了相应的计算模块,进行了混凝土试样的拉伸和压缩细观破坏分析.结果表明:近场动力学模型和数值方法能够成功模拟混凝土材料的复杂破坏过程,得到的破坏现象与试验结果吻合程度较好,进一步探究了混凝土材料的破坏机制,完善了混凝土结构的破坏分析过程.  相似文献   
10.
以2,2′∶6′,2″-三联吡啶(L1)为基础,通过引入不同的空穴传输基团合成了4′-咔唑基-2,2′∶6′,2″-三联吡啶(L2),4′-二苯基胺基-2,2′∶6′,2″-三联吡啶(L3),4′-二(4-叔丁基苯基)胺基-2,2′∶6′,2″-三联吡啶(L4),4′-(N-苯基-1-萘基)胺基-2,2′∶6′,2″-三联吡啶(L5),4′-(N-苯基-2-萘基)胺基-2,2′∶6′,2″-三联吡啶(L6)5个N,N,N-三齿中性配体,然后以三氟乙酰噻吩丙酮(HTTA)作为第一配体合成了6种铕配合物。在369~373 nm激发条件下,配合物都表现出铕离子5D0-7FJ(J=0,1,2,3,4)的特征发射。引入不同的空穴传输基团后,在铕离子的周围形成了"光吸收天线"(light-harvesting antenna),不仅扩大了配合物吸收光能的范围、增强了配合物的吸收强度,而且提高了配合物的光致发光性能。其中含有咔唑基团的配合物具有最强的发光强度和最长的激发态寿命。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号