首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
以氮掺杂碳纳米管(NCNT)为载体,利用掺杂氮原子的锚定作用,通过微波辅助乙二醇还原法方便地将Pt纳米粒子高分散地固载于NCNT表面,制得了Pt/NCNT系列催化剂,对催化剂制备规律、电催化甲醇氧化反应(MOR)性能及构效关系开展了系统深入的研究。结果表明,随Pt负载量在18.2%~58.7%(w/w,下同)范围增加,Pt纳米粒子的粒径在2.2~3.7 nm范围相应地逐渐增大。单位质量催化剂的MOR催化活性先增加后急剧减小,在负载量为47.8%时达到最大。Pt的质量比活性在中等负载量(27.6%~47.8%)区间出现高值平台。该变化规律源于Pt纳米粒子的MOR催化活性在3 nm前后的明显差异,即3 nm时活性差,3 nm时活性优异。高负载量(58.7%)时活性的急剧下降源于Pt纳米粒子因团聚引起的Pt利用率的降低。  相似文献   

2.
利用氮掺杂碳纳米笼(hNCNC)的高比表面积及掺杂氮原子的锚定作用,方便地将约3 nm的Pt-Ru合金纳米粒子均匀地负载在hNCNC表面,制得了Pt和Ru比例可调的Pt-Ru/hNCNC双金属合金催化剂.这些催化剂展现出优异的甲醇催化氧化活性和稳定性,且具有良好的抗CO中毒能力,显著优于Pt/hNCNC和商业PtRu/C等对照组催化剂.其优异的电化学性能可归因于以下因素的协同作用:(1) Pt-Ru合金的双功能机制增强了催化剂的CO氧化脱附能力从而使活性位重新暴露,(2) hNCNC的氮掺杂及高比表面积有利于获得粒径小且均匀的合金纳米粒子,(3) hNCNC的多尺度分级孔结构有利于甲醇等参与反应物质的传输.  相似文献   

3.
高性能低成本的担载型铂基催化剂是直接甲醇燃料电池(DMFC)实用化过程中的一大挑战.利用高比表面积、高稳定性、容易负载金属的载体实现 Pt颗粒的高度分散,既可提高催化剂的催化性能,又可提高 Pt的利用率以降低成本,是担载型 Pt基催化剂实用化的有效途径.碳材料是一种常用的催化剂载体,近年来我们课题组发展了一种高性能的碳纳米笼材料,并可通过异原子掺杂调变其表面性能,提高其活性和负载能力.我们采用原位氧化镁模板法制备氮掺杂碳纳米笼:以具有多级结构的碱式碳酸镁作为氧化镁模板的前体,吡啶为碳源和氮源,经高温热解沉积,在原位形成的氧化镁模板表面形成氮掺杂的石墨化碳纳米薄层;经稀盐酸浸泡并洗涤,获得高纯度的氮掺杂碳纳米笼.氮掺杂碳纳米笼具有分等级的微纳米结构、高导电性、高比表面积和可调变的孔结构,结合表面氮原子的锚钉作用,氮掺杂碳纳米笼有望成为电化学催化剂 Pt的优良载体.
  在前期研究基础上,本文探索多级结构氮掺杂碳纳米笼(hNCNC)作为新型载体负载 Pt的能力,并评价所构建的负载型催化剂 Pt/hNCNC的电催化性能.通过简便的微波辅助多元醇还原法,将氯铂酸还原成 Pt纳米粒子负载于 hNCNC的表面.为了揭示氮掺杂的效应,我们对比研究了具有相似分级结构但无掺杂的碳纳米笼(hCNC)以及商业化活性炭(Val-can XC-72)作为载体的情况.经热重(TG)和 X射线光电子能谱(XPS)分析,三种催化剂 Pt/hNCNC、Pt/hCNC和 Pt/XC-72的负载量均接近理论负载量(23.1 wt%),都主要以金属态存在.然而,扫描电子显微镜(SEM)和透射电子显微镜(TEM)结果表明, Pt/hNCNC的 Pt分散状态优于 Pt/hCNC,更远优于 Pt/XC-72. Pt/hNCNC的平均 Pt粒径最小,仅约3.3 nm.这种良好的分散状态主要得益于氮原子掺杂,高负电性的氮原子改变了局域的表面极性,有利于 Pt颗粒的成核,也有利于固定 Pt颗粒.
  由于 hNCNC对 Pt的优异分散能力, Pt/hNCNC表现出高的电化学活性面积.氢吸附和一氧化碳溶出伏安曲线表明, Pt/hNCNC的电化学活性面积高于 Pt/hCNC和 Pt/XC-72,这与显微观察和 X射线衍射(XRD)结果相吻合. Pt/hNCNC展现出优异的甲醇电催化氧化活性和高稳定性,其催化电流明显高于 Pt/hCNC和 Pt/XC-72,电流衰减亦慢于 Pt/hCNC和 Pt/XC-72. hNCNC的分级微纳米结构有利于孔内传质和电子输运,从而提高反应速度. hNCNC的氮掺杂有利于 Pt在载体表面的分散,增强了载体-金属相互作用,提高了电化学活性面积和催化活性.为了进一步考察 hNCNC对 Pt的负载能力,本文还考察了高负载量 Pt/hNCNC的性能.在负载量高达60 wt%时, Pt/hNCNC中的 Pt颗粒仍无明显聚集,其甲醇氧化电流增加了30%,可以有效提高 DMFC的输出电流密度.
  综上可见, hNCNC可以有效分散并稳定 Pt颗粒,从而提高电化学活性面积和甲醇电催化氧化活性,优于未掺杂的碳纳米笼和传统碳材料,展示了 hNCNC高分散 Pt颗粒用作 DMFC的高效阳极催化剂的重要前景,也表明 hNCNC有望成为应用广泛的新型载体.  相似文献   

4.
高度分散的Pt/TiO2的制备及光催化活性   总被引:1,自引:0,他引:1  
张青红  高濂 《化学学报》2005,63(1):65-70
用柠檬酸作为空穴捕获剂和分散剂, 在温和条件下用光催化还原法将3 nm金属铂沉积在7 nm的锐钛矿相及介孔二氧化钛纳米晶表面. TEM观察显示铂的负载量为w=1.0%时, 多数二氧化钛纳米晶表面沉积了岛状的铂团簇, XPS和电子衍射结果表明铂以游离态存在. 负载w=1.0%~2.0%铂的TiO2在苯酚光氧化反应中活性显著提高. Pt/TiO2在氨气中经550 ℃氮化, 可制得氮掺杂的Pt/TiO2可见光光催化剂, 氮化过程中铂团簇没有烧结和显著长大.  相似文献   

5.
采用长链聚合物聚二烯丙基二甲基氯化铵(PDDA)对多壁碳纳米管(MWCNTs)进行修饰,并将采用胶体法还原出的铂(Pt)纳米粒子通过静电作用担载于PDDA修饰的多壁碳纳米管上,从而制备出Pt/PDDA/MWCNTs复合电催化剂.透射电镜(TEM)与X射线衍射(XRD)测试结果表明, Pt纳米粒子均匀地分布在MWCNTs的表面,其平均粒径约为3.6 nm.热失重分析显示催化剂的实际负载量为36%(w).旋转圆盘电极测试结果表明, Pt/PDDA/MWCNTs催化剂对碱性条件下的氧气还原反应(ORR)具有优异的催化活性.与负载量为40%(w)的商业Pt/C催化剂相比, Pt/PDDA/MWCNTs催化剂的氧气还原反应的起始电位和半波电位均正移约30 mV,其质量比活性更大.动力学研究结果进一步证实Pt/PDDA/MWCNTs催化剂比负载量为40%(w)的商业Pt/C催化剂在碱性条件下对氧气还原反应具有更优异的催化活性.  相似文献   

6.
高性能低成本的担载型铂基催化剂是直接甲醇燃料电池(DMFC)实用化过程中的一大挑战.利用高比表面积、高稳定性、容易负载金属的载体实现Pt颗粒的高度分散,既可提高催化剂的催化性能,又可提高Pt的利用率以降低成本,是担载型Pt基催化剂实用化的有效途径.碳材料是一种常用的催化剂载体,近年来我们课题组发展了一种高性能的碳纳米笼材料,并可通过异原子掺杂调变其表面性能,提高其活性和负载能力.我们采用原位氧化镁模板法制备氮掺杂碳纳米笼:以具有多级结构的碱式碳酸镁作为氧化镁模板的前体,吡啶为碳源和氮源,经高温热解沉积,在原位形成的氧化镁模板表面形成氮掺杂的石墨化碳纳米薄层;经稀盐酸浸泡并洗涤,获得高纯度的氮掺杂碳纳米笼.氮掺杂碳纳米笼具有分等级的微纳米结构、高导电性、高比表面积和可调变的孔结构,结合表面氮原子的锚钉作用,氮掺杂碳纳米笼有望成为电化学催化剂Pt的优良载体.在前期研究基础上,本文探索多级结构氮掺杂碳纳米笼(hNCNC)作为新型载体负载Pt的能力,并评价所构建的负载型催化剂Pt/hNCNC的电催化性能.通过简便的微波辅助多元醇还原法,将氯铂酸还原成Pt纳米粒子负载于hNCNC的表面.为了揭示氮掺杂的效应,我们对比研究了具有相似分级结构但无掺杂的碳纳米笼(hCNC)以及商业化活性炭(Valcan XC-72)作为载体的情况.经热重(TG)和X射线光电子能谱(XPS)分析,三种催化剂Pt/hNCNC、Pt/h CNC和Pt/XC-72的负载量均接近理论负载量(23.1 wt%),都主要以金属态存在.然而,扫描电子显微镜(SEM)和透射电子显微镜(TEM)结果表明,Pt/hNCNC的Pt分散状态优于Pt/h CNC,更远优于Pt/XC-72.Pt/hNCNC的平均Pt粒径最小,仅约3.3 nm.这种良好的分散状态主要得益于氮原子掺杂,高负电性的氮原子改变了局域的表面极性,有利于Pt颗粒的成核,也有利于固定Pt颗粒.由于hNCNC对Pt的优异分散能力,Pt/hNCNC表现出高的电化学活性面积.氢吸附和一氧化碳溶出伏安曲线表明,Pt/hNCNC的电化学活性面积高于Pt/h CNC和Pt/XC-72,这与显微观察和X射线衍射(XRD)结果相吻合.Pt/hNCNC展现出优异的甲醇电催化氧化活性和高稳定性,其催化电流明显高于Pt/h CNC和Pt/XC-72,电流衰减亦慢于Pt/h CNC和Pt/XC-72.hNCNC的分级微纳米结构有利于孔内传质和电子输运,从而提高反应速度.hNCNC的氮掺杂有利于Pt在载体表面的分散,增强了载体-金属相互作用,提高了电化学活性面积和催化活性.为了进一步考察hNCNC对Pt的负载能力,本文还考察了高负载量Pt/hNCNC的性能.在负载量高达60 wt%时,Pt/hNCNC中的Pt颗粒仍无明显聚集,其甲醇氧化电流增加了30%,可以有效提高DMFC的输出电流密度.综上可见,hNCNC可以有效分散并稳定Pt颗粒,从而提高电化学活性面积和甲醇电催化氧化活性,优于未掺杂的碳纳米笼和传统碳材料,展示了hNCNC高分散Pt颗粒用作DMFC的高效阳极催化剂的重要前景,也表明hNCNC有望成为应用广泛的新型载体.  相似文献   

7.
以硼掺杂碳化硅(B0.1SiC)为载体,采用循环伏安法在B0.1SiC载体上电沉积Pt纳米粒子制备了Pt/B0.1SiC催化剂。利用X射线光电子能谱、X射线衍射、氮气吸附-脱附、扫描电镜及透射电镜等测试方法对催化剂的晶型、表面性质及形貌进行了表征。结果表明,硼原子掺杂进入SiC晶格并取代了Si位点,使B0.1SiC载体的导电性增强;Pt纳米粒子均匀地分布在B0.1SiC载体上,平均粒径为2.7 nm。与相同条件下制备的Pt/SiC催化剂相比,Pt/B0.1SiC具有较大的电化学活性表面积、更高的甲醇催化氧化活性和稳定性。  相似文献   

8.
采用溶胶法制备了碳载Pt-M(M为Ni, Fe, Mo)电催化剂, 并用TEM和XRD技术表征活性物微观结构, 实验结果表明, Pt基合金微粒在碳黑表面分布均匀, 粒径约为2~4 nm. 用循环伏安法测定催化剂在不同碱性条件下的活性, 研究结果表明, 不同掺杂元素催化剂的活性大小顺序为Pt75Ni25/C>Pt75Fe25/C>Pt50Mo50/C, 掺杂Ni可明显地促进纳米Pt的催化活性, Pt75Ni25/C在1.0 mol/L NaOH+1.0 mol/L CH3OH溶液中的峰电流密度可以达到726.9 mA/mg.  相似文献   

9.
氮掺杂有序介孔碳材料不仅具有高的比表面积、大的孔容和均一可调的孔径等优点,其骨架中丰富的氮原子还可以对材料的物理化学性质、配位金属电荷密度等进行调控,是一类优异的催化剂载体.本文利用软模板(嵌段共聚物F127为模板),以间氨基苯酚为碳源和氮前体,制备出较高含氮量(9.58 wt%)和比表面积(417 m2/g),以及规则孔径分布的介孔碳材料.结果表明,制备的材料具有三维立方相结构.以该碳材料作为载体,使用传统浸渍氢气还原的策略负载纳米铂颗粒.发现氮掺杂的载体能够有效控制金属纳米颗粒的尺寸,可实现超小尺寸Pt纳米颗粒的有效负载(1.0±0.5 nm),且纳米颗粒均匀分布于介孔碳材料的孔道中.相比而言,使用相同负载方法的情况下,以不掺氮的介孔碳材料为载体,纳米粒子的尺寸较难控制(4.4±1.7 nm)且会发生孔道外颗粒聚集的情况.研究表明,骨架中的氮原子与金属间弱的相互作用对纳米粒子有稳定作用.这对制备超小尺寸的金属纳米粒子催化剂具有一定的指导意义.此外,由于纳米粒子的尺寸将大大影响催化剂活性中心的暴露程度,进而影响催化剂活性.因此,我们以硝基苯类化合物的氢化反应来评价该催化剂的催化性能.在室温和1 MPa H2的温和条件下,氮掺杂的介孔碳负载催化剂表现出了优异的催化性能.反应0.5 h,对氯硝基苯可完全转化,且选择性高达99%.相比而言,商业化的Pt/C催化剂上反应的转化率和选择性分别为89%和90%.其它传统催化剂的比较,如Pt/SiO2,Pt/TiO2,同样表明,氮掺杂介孔碳负载的催化剂具有更优异的催化性能.在相同反应条件下,Pt/SiO2催化剂只能得到46%的转化率和93%的选择性,而Pt/TiO2催化剂虽然能够实现完全转化,但选择性也仅为91%.由此可见,氮掺杂的负载催化剂可大大提高反应活性和选择性,能有效抑制脱氯现象的发生.这种高的催化性能可能与催化剂的介孔结构、氮功能化载体以及超小尺寸的Pt纳米粒子的稳定有关.由于氮原子和介孔孔道的限域作用,氮掺杂介孔碳负载的催化剂也具有良好的催化稳定性,循环使用10次后,催化活性和选择性几乎没有下降.结果表明,循环使用后的催化剂金属粒子尺寸变化不大,进一步表明氮掺杂介孔碳载体对金属纳米颗粒的稳定作用.  相似文献   

10.
在本课题组研究55 nm Au@Pd@Pt对甲酸电催化效果基础上,我们采用Ag取代Au制备55 nm Ag@Pd@Pt纳米粒子以降低催化剂的成本,并对甲酸的电催化行为进行研究. 研究表明:少量Pt的存在可大幅度提高催化剂的活性,当Pt的覆盖度为0.5 单原子层(ML)时,起始氧化电位最为靠前,氧化峰电流最大,这与Au@Pd@Pt纳米粒子对甲酸电催化行为类似. 与Au@Pd@Pt纳米粒子相比,其最佳起始氧化电位偏正0.05 V,但电催化活性并没有明显的降低. 通过改变催化剂比表面积研究甲酸的电催化行为,发现将9 nm Ag纳米粒子作为内核的9 nm Ag@Pd@Pt负载在活性炭中,在保持催化活性不变的情况下,碳载的催化剂价格可比55 nm Au@Pd@Pt纳米粒子降低220倍左右.  相似文献   

11.
High metal-loading Pt/C electrocatalysts are important for the fabrication of thin-layered membrane electrode assemblies (MEAs). However, the preparation of high-loading Pt catalysts with a narrow size distribution of nanoparticles remains a challenge. Herein, ordered mesoporous carbon (OMC) with large mesopores (~15 nm) and a high surface area (1316.0 m2 g?1) was fabricated using a SiO2 nanosphere array as a template. This material was developed to support a high loading of Pt nanoparticles (60 wt%) and was then used as an electrocatalyst for the methanol oxidation reaction (MOR). The prepared Pt/OMC contains Pt nanoparticles with an average size of ~1.9 nm that are uniformly dispersed on the mesoporous walls of the OMC. The Pt/OMC catalyst exhibits smaller Pt nanoparticle size, greater Pt dispersion, larger specific electrochemically active surface area (ECSA), and higher electrocatalytic activity for the MOR than the carbon black (Vulcan XC-72R)-supported Pt and the commercial Pt/C catalysts.  相似文献   

12.
以邻苯二胺为表面活性剂,通过水热釜法一步制备凹形树突状PtCu双金属纳米催化剂(PtCu NCDs)。PtCu NCDs在电催化甲醇氧化(MOR)的应用中表现出非常高的活性和很强的抗有毒中间体作用。PtCu NCDs对于甲醇氧化的质量活性为(0.53 A·mg-1 Pt)是商业Pt/C(0.26 A·mg-1 Pt)的2.04倍。从比活性的CV曲线图对比发现PtCu NCDs(1.07 mA·cm-2)是商业Pt/C(0.55 mA·cm-2)的1.95倍。而且,PtCu NCDs(2.76)比商业Pt/C催化剂(1.02)表现出更高的If/Ib比值。这些优异的电催化活性可能归功于PtCu NCDs特殊的凹形树突状形貌。  相似文献   

13.
核壳结构碳化钨复合微球催化剂对甲醇电催化性能   总被引:1,自引:0,他引:1  
以偏钨酸铵微球为前驱体,在不同反应时间和CO/CO2气氛条件下,通过原位还原碳化反应制备了具有核壳结构碳化钨复合微球。采用X射线粉末衍射(XRD)、X射线光电子能谱(XPS)和扫描电镜(SEM)等对催化剂的形貌和结构进行了表征分析。硼氢化钠还原法将平均粒径为4.6 nm的Pt纳米粒子均匀分布在其表面,得到核壳结构碳化钨复合催化剂。采用循环伏安和计时电流法研究了在酸性溶液中催化剂对甲醇的电催化氧化性能。结果表明,与Pt/WC-15 h和JM Pt/C催化剂的电化学性能相比,Pt/WC-6 h催化剂对甲醇呈现出更高的电催化氧化活性和稳定性。碳化钨复合微球表面少量WO2成分的存在有利于甲醇在其表面的电催化氧化过程的发生。  相似文献   

14.
以邻苯二胺为表面活性剂,通过水热釜法一步制备凹形树突状PtCu双金属纳米催化剂(PtCu NCDs)。PtCu NCDs在电催化甲醇氧化(MOR)的应用中表现出非常高的活性和很强的抗有毒中间体作用。PtCu NCDs对于甲醇氧化的质量活性为(0.53 A·mg-1 Pt)是商业Pt/C(0.26 A·mg-1 Pt)的2.04倍。从比活性的CV曲线图对比发现PtCu NCDs(1.07 mA·cm-2)是商业Pt/C(0.55 mA·cm-2)的1.95倍。而且,PtCu NCDs(2.76)比商业Pt/C催化剂(1.02)表现出更高的If/Ib比值。这些优异的电催化活性可能归功于PtCu NCDs特殊的凹形树突状形貌。  相似文献   

15.
Exploring efficient strategies to construct durable and active Pt-based electrocatalysts toward methanol oxidation reaction (MOR) remains great significance for the application of direct methanol fuel cells (DMFCs). Here, we report a facile pyrolysis procedure for fabricating carbon layer wrapped PtFeCo alloy nanoparticles supported on nitrogen-doped carbon nanotubes (NCNT). Physical characterizations demonstrate that the nitrogen-doped carbon support is highly graphitized and the PtFeCo particles are firmly wrapped by the graphitized carbon. Since the wrapping of highly graphitized carbon effectively prevents PtFeCo alloy from metal dissolution, the durability of the synthesized PtFeCo/Co–NCNTa catalyst has been substantially improved, remaining about 76% of its initial mass activity after 1000 cycles of durability test in acid condition. In addition, due to the strain and ligand effects caused by alloying Pt with Fe and Co, the PtFeCo/Co–NCNTa catalyst exhibits a greatly enhanced mass activity of 4.2-fold and a specific activity of 6.3-fold higher than those of commercial Pt/C-JM catalyst. Consequently, this work may provide an effective route for preparing durable and active Pt-based catalysts for methanol electro-oxidation.  相似文献   

16.
A hybrid photocatalyst was prepared from visible light-responsive Pt/WO3 and siliceous mordenite (MOR) zeolite by simple impregnation with an aqueous solution of (NH4)10W12O41·5H2O. Unmodified Pt/WO3 had low photocatalytic activity in gas phase oxidation of acetaldehyde because of its low surface area (3–5 m2/g). In contrast, the Pt/WO3–MOR had higher photocatalytic activity under focused sunlight and Xe lamp irradiation. Pt/WO3–MOR with low WO3 content (<20 wt%) adsorbed sufficient acetaldehyde, but absorption of light in the visible region was low. The optimum zeolite content enhancing the photocatalytic activity of Pt/WO3 was estimated to be 30–50 % (w/w). Adsorption of the gaseous reactants and the efficiency of absorption of incident light are both important aspects of high photocatalytic activity.  相似文献   

17.
我们通过热注入的方法制备了一种高CO耐性的金属间PtBi纳米片。所制备的金属间PtBi纳米片在甲醇氧化反应(MOR)中展现出优异的催化性能和良好的稳定性能,最大的质量活性高达4.09 A·mgPt-1,接近商业Pt/C的3.2倍。计时电流-时间(I-t)稳定性测试之后,活性仅仅衰减5.7%,远低于商业Pt/C。CO吸附-脱附(CO-Stripping)曲线和循环伏安演变(CV-Evolution)曲线证实了金属间PtBi纳米片高的CO耐受性。  相似文献   

18.
我们通过热注入的方法制备了一种高CO耐性的金属间PtBi纳米片。所制备的金属间PtBi纳米片在甲醇氧化反应(MOR)中展现出优异的催化性能和良好的稳定性能,最大的质量活性高达4.09 A·mgPt-1,接近商业Pt/C的3.2倍。计时电流-时间(I-t)稳定性测试之后,活性仅仅衰减5.7%,远低于商业Pt/C。CO吸附-脱附(CO-Stripping)曲线和循环伏安演变(CV-Evolution)曲线证实了金属间PtBi纳米片高的CO耐受性。  相似文献   

19.
Platinum (Pt) nanoparticles were synthesized inside a Nafion polyelectrolyte membrane for use as a catalyst membrane integrated layer in fuel cells. The integrated membrane was prepared by making use of the cation exchange between the tetraammineplatinum (II) cations ([Pt(NH3)4]2+) and sulfonic groups in the Nafion molecules, followed by film casting and chemical reduction. The synthesized Pt nanoparticles, which had a cubic shape with diameters of 11.5–14.5 nm, dispersed in the recast Nafion film, increased its proton conductivity and open circuit voltage compared with the pristine Nafion membrane. The Pt-incorporated membrane provided a 29% increment of the maximum power density, seemingly by oxidizing the crossover methanol passing through the proton-exchange membrane. At a high loading of Pt (over 3 wt.% in this study), the Nafion clusters were likely squeezed by the synthesized Pt nanoparticles so as to decrease the water uptake and proton conductivity. This hypothesis was also supported by the increased Ohmic resistance in the IV polarization curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号