首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为考察金刚石形成氢终止表面的反应机制,采用微波氢等离子体处理以及电阻丝氢气气氛加热处理进行对比研究.利用光发射谱(OES)和漫反射傅里叶变换红外光谱(DRIFTS)分别表征了微波氢等离子体中的活性基团和金刚石表面氢终止浓度.结果表明,微波氢等离子体环境下,随着衬底温度、等离子体密度和能量的增加,温度至700 ℃ (800 W/3 kPa)时,等离子体中出现了明显的CH基团;相应地,金刚石表面氢终止浓度随温度、等离子体密度和能量的增加而增加.采用氢气气氛下电阻丝加热的方法同样形成了氢终止金刚石表面,表明微波等离子体处理金刚石表面形成氢终止主要源于由温度控制的表面化学反应,而非等离子体的物理刻蚀作用.氧终止金刚石表面形成氢终止的机制是表面C=O键在高于500 ℃时分解为CO,相应的悬挂键由氢原子或氢分子占据.  相似文献   

2.
十氢萘气相氧化裂解制低碳烯烃的研究   总被引:1,自引:1,他引:0  
十氢萘气相氧化裂解(GOC)与传统的热裂解工艺相比,O2的存在降低了十氢萘GOC反应的活化能,使反应在较低温度下具有高的反应性能;O2同时起到消除积炭的作用,提高体系的抗积炭能力。十氢萘GOC反应在较低温度下即可获得较高的液体收率;高温下由于十氢萘裂解深度较高,低碳烯烃收率可高于液体收率,在所得的液体中,芳烃,尤其是BTX(苯、甲苯和二甲苯)占主要部分。十氢萘GOC反应制备低碳烯烃的适宜反应条件为,700℃~800℃,停留<0.4s,烷氧摩尔比0.3~0.5,空气可代替纯氧进料。800℃,烷氧摩尔比0.5,停留0.4s,可获得37%左右的低碳烯烃收率和50%左右的液体收率(BTX收率为29%)。  相似文献   

3.
氢化钛中氢的理论含量可达4%。本文将着重探讨大量氢存在下,对氧测定的影响,以及为了克服这种影响,采用了事先真空加热预处理氢化钛试样的方法。建立了高频加热惰气熔融测定氢化钛中氧的分析方法。实验部分 (一)高含量氢对氧测定的影响试验表明,采用高频加热惰气熔融库仑滴定法测定氢化钛中氧时,随着试样重量的增加,亦即试样中含氢量的增加,测得氧含量明显地偏低。为了观察氢含量对氧测定的实际影响,将氢化钛试样在高真空下,用不同温度加热处  相似文献   

4.
以正己烷作为裂解原料烃类代表,Pt-Sn/Al2O3催化剂作为氢选择性燃烧催化剂,对直接内加热方式提供热量促使裂解原料达到可裂解温度的可行性进行了研究。结果表明,温度相同时,Pt-Sn/Al2O3 催化剂存在时氢燃烧的选择性明显高于无催化剂存在时的非催化氢燃烧过程,Pt-Sn/Al2O3 催化剂是优良的氢选择性燃烧催化剂。该催化剂在催化氢选择性燃烧过程中,存在一个临界温度点650℃。当物流入口温度低于650℃时,氢燃烧选择性达90%以上;高于650℃时,由于非催化氢燃烧所占总燃烧反应比例加大,造成氢燃烧选择性有所降低。同时,在一定温度下,要获得高的氢燃烧选择性及氧气转化率,须综合考虑氢烃比和氢氧比的影响。  相似文献   

5.
脉冲电加热惰性气氛熔化测定金属中气体,由于它有设备简单、操作简便和速度快等优点,所以很快地应用到气体分析实践工作中去。目前,国内已经有很多单位应用了这一分析技术。我单位结合实际情况,采用了脉冲加热与气相色谱联合,先建立了测定钽、铌金属中氧和氢的分析方法,经过不断的实践,又进行了一些改革:如缩小了加热室的体积和采用了不带盖的小石墨坩埚,用双气路和同一脉冲电源接双套电极,可交错使用。从而避免了坩埚脱气和做试样互相等待的空闲时间,  相似文献   

6.
锆具有良好的核性能、机械性能和耐腐蚀性能,被广泛用作核电燃料元件的包壳材料。氢可使锆发生脆性断裂,氢在金属缺陷附近富集导致的氢脆,是燃料元件包壳破损的潜在原因[1-2]。因此,准确测定锆中氢的含量对保证核电燃料元件制造质量具有非常重要的意义。氢在金属中扩散系数较大。从热力学角度分析,氢化物分解及氢的析出不需要过高的温度及浴金属,但在无浴或较低温度下析出氢耗时相当长。只有将被测金属加热至高于其熔点的温度或将其熔  相似文献   

7.
利用Vario ELⅢ型元素分析仪测定了碳纤维中氮、碳和氢的含量。优化的试验条件为:称样量2.1~2.4 mg,加氧时间120 s,燃烧管温度980℃。选用乙酰苯胺计算当天校正因子,方法用于碳纤维和石墨样品分析,含碳量在88.05%~99.46%之间,而在绝大多数样品中氮和氢的质量分数都小于0.30%。  相似文献   

8.
本文研究了“Bi(BiF_3)|La_(0.95)Pb_(0.05)F_(2.95)|Ft”元件的氧敏特性和常温氢敏特性。元件的电动势与氧分压呈对数关系。150℃时,氧分压从0.21×10~5Pa到1.0×10~5Pa时,90%响应时间仅为80s。在所测的氢气分压范围内,电动势与氢分压对数呈良好线性关系:E=E_o-961gP_(H_2)mV。敏感电极反应归结为局域电流或称混合电势机理。20℃时,元件对空气中1000Pa氢气的90%响应时间仅用15s。  相似文献   

9.
以LiAlH4, LiBH4和AlCl3为原料, 采用有机合成法制备了单一相的α-AlH3和γ-AlH3, 并对其放氢性能进行了研究.结果表明, 两种晶型AlH3的放氢量均可达8.3%~8.5%(质量分数), 放氢温度范围在120~160℃之间, 且γ-AlH3的放氢峰值温度比α-AlH3低8.2℃; α-AlH3和γ-AlH3的放氢反应表观活化能分别为94.6和86.3 kJ/mol; 加热过程中α-AlH3直接发生放氢反应, γ-AlH3在放氢前先发生向α-AlH3的相变, 这一相变过程使得AlH3的晶格得到活化, 从而促进放氢反应的进行.  相似文献   

10.
脉冲加热浴熔法测定钛及合金中氢的研究   总被引:1,自引:0,他引:1  
准确测定钛材及钛件中氢浓度,深入研究钛中氢的测定方法,对确保航空产品质量是至关重要的.目前,国内外的测氢手段,都趋于成熟,氢的分离和检测,是可信的.测氢的关键,主要取决于氢的完全、可靠的释放.脉冲加热浴熔法,是释放难熔金属钛及其合金中氢的最常用最可取的方法.炉温高达3000℃以上的脉冲加热方式,给无浴法提取钛合金中氢,创造了有利条件.本文以大量的试验分析数据,介绍了锡浴法和无浴法测定钛及其合金中氢的准确性和适用性,并选择其最佳的测定参数。还讨论了无浴法释放钛合金中氢的可靠性问题和石墨坩埚温控的操作问题.  相似文献   

11.
在低钯含量活性非均布Pd/Al2O3催化剂上,实现了富氧条件下,氢部分选择性催化还原NO过程,低温、富氧条件下NO的转化率高达80%-100%。NO直接分解实验表明,600℃,NO分解转化率在无氧时为17.3%,有0.5%氧存在时接近于0。氢非选择性还原NO条件下,100℃以下,NO转化率为100%。根据实验结果及文献,推测了氢部分选择性还原NO过程中可能存在的反应,不同的反应温度下,NO脱除反应有所不同。在115℃以下,NO还原产物为NH3;115℃-155℃,NO还原产物为NH3、N2O和N2;155℃以上,NO还原产物中无NH3存在。NO还原反应与氢氧反应是平行的竞争反应。  相似文献   

12.
在间歇式高压反应釜中,采用Ni/g-Al_2O_3加氢催化剂,在较低的反应温度和压力下,进行了苊加氢合成四氢苊和全氢苊的实验研究。考察了反应温度、H_2压力、催化剂用量和反应时间对苊转化率、四氢苊和全氢苊选择性的影响规律。实验结果表明,温度是影响加氢反应的主要因素,在催化剂用量为5%(与苊重量比)、压力2.0 MPa、反应15 h条件下,当反应温度为140℃,主要生成四氢苊产品,选择性为94%,反应温度为180℃,主要生成全氢苊产品,选择性为98%。  相似文献   

13.
建立热导法测定航空用铝合金中氢的含量。使用数控车床将试样加工成长圆棒,再将其锯切成小圆棒进行分析,讨论了RHEN 602测氢仪的重要参数如分析参数、元素参数、电极炉参数、温度维持程序等,其中坩埚预排气周期为4次,表面氢分析功率为850 W,内部氢分析功率为1 300 W,表面氢和内部氢积分时间分别为120 s和330 s,温度维持采用程序升温。讨论了氢含量测定结果的影响因素,确定坩埚需进行3次以上的空白运行,以减少试样空白对测定结果的影响。载气纯度应大于99.999%,设备稳定3 h以上,试样质量在2~5 g之间,标准样品与试样牌号系列一致且含量高于试样。标准样品验证结果相对偏差为1.39%,航空用2219铝合金板材样品测定结果的相对标准偏差为12.60%(n=10),满足样品检测的重复性技术要求。该法可用于铝合金中氢含量的测定。  相似文献   

14.
核磁共振氢谱是有机化合物结构表征中最常使用的波谱方法之一,提供了有机化合物质子的化学位移、积分面积和耦合裂分等信息。常见的活泼氢是与氧、氮和硫共价相连的氢原子,存在着快速交换机制,与碳上的氢有显著的差异。在不同条件下活泼氢化学位移不固定、峰形多变并且耦合裂分情况复杂。本文探讨了如何通过核磁共振氢谱解析活泼氢,培养学生对谱图进行观察、分析以及结构推导的能力。  相似文献   

15.
HCS-140型高频红外碳硫分析仪测定钽铌碳化钽中碳   总被引:1,自引:1,他引:1  
由于钽、铌都是难熔金属,含碳量比较低,而碳化钽中碳含量又特别高,所以用一般的化学法、库仑法、电导法等分析方法测定钽、铌基体中碳比较困难.管式炉燃烧法由于炉子温度只能加热到1100~1400℃,在这个温度范围内钽、铌基体中碳很难充分氧化,而用高频燃烧红外法测定钽、铌基体中碳就比较理想.本法采用铜、钨作助熔剂,使测定的准确性、重复性大为提高.1 试验部分1.1 仪器与主要试剂HCS-140型高频红外碳硫分析仪(上海德凯仪器公司)陶瓷坩埚(φ25mm×25mm)(湖南金利化工厂)  相似文献   

16.
委内瑞拉常压渣油供氢热转化研究   总被引:1,自引:0,他引:1  
采用高压釜研究了委内瑞拉常压渣油的常规减黏裂化与供氢热转化过程。结果表明,相比常规减黏裂化而言,供氢热转化过程中的供氢剂能够抑制气体产物、沥青质以及焦的形成,后者的气体收率比前者低0.5%~1.2%,生焦率低0.02%~0.98%,残渣油沥青质含量低0.6%~1.3%;在反应温度425℃、反应时间5~20 min条件下,供氢热转化过程的总降黏率、净降黏率变化分别为46.1%~54.8%、10.2%~33.0%;供氢热转化过程的较佳反应条件为425℃、5 min,此条件下供氢热转化生成油斑点实验等级为一级(ASTM D4740),运动黏度(50℃)为185.5 mm2/s,净降黏率为26.4%,满足了船运的基本要求。  相似文献   

17.
本文采用程序升温脱附(TPD)技术研究了光沉积方法制备的Pt/TiO_2催化剂经过氧化、还原后氧、氢的脱附行为.光沉积过程中,Pt/TiO_2表面上可以生成大量的吸咐氢,在TPD中脱附;同时Pt/TiO_2表面上化学吸附的水在TPD过程中也可以分解释氢.氧化处理的Pt/TiO_2在TPD过程中于550~750K温区出现氧脱附峰,随着氧化温度升高,脱附峰位向高温移动,经实验证明,这种可脱附活泼氧物种的生成是由样品前身中留存氢引起的.还原处理的Pt/TiO_2在TPD过程中分别在300~600和大于600K出现两个氢脱附峰,认为是由于表面羟基和钛—氢(Ti~(4+)—H~-)物种的分解释氢引起的Pt/TiO_2上活泼氧物种的存在,增加了样品在室温条件下的吸氢量;在中温(473~573K)这种活泼氧物种则和氢发生反应,减少了TPD过程中的脱氢量;Pt/TiO_2在大于673K温度还原,可以消除活泼氧物种的影响.  相似文献   

18.
采用机械球磨(NaH/Al+Ti)和(NaH/Al+Ti-Zr)复合物的方法加氢制备了NaAlH4配位氢化物, 系统研究了Ti、Ti-Zr催化剂以及不同加氢条件对其可逆储氢行为的影响. 结果表明, 对于NaH/Al体系的吸放氢性能, 共掺金属Ti粉/Zr粉的催化作用比单独掺金属Ti粉的催化作用要好. 随着加氢温度从85 ℃上升到140 ℃, 体系的吸氢容量先增后减, 并在120 ℃时达到最大值; 同时, 发现共掺Ti-Zr催化剂的复合物具有最佳的储氢性能, 在120和85 ℃时的吸氢量分别为4.61%和3.52%(w), 比仅掺Ti 催化剂的复合物分别高出0.40%和0.70%(w)的吸氢量. 随着加氢压力的增大, (NaH/Al+Ti-Zr)复合物的吸氢性能随之提高. XRD和DSC分析结果表明, NaAlH4体系的放氢过程明显发生两步分解反应, 共掺Ti-Zr催化剂的复合物储氢性能优于单独掺Ti 催化剂的原因是, 共掺催化剂能有效改善NaAlH4体系吸放氢反应的动力学性能,并降低体系的放氢温度.  相似文献   

19.
Ti-Zr催化剂对NaH/A1复合物可逆储氢特性的影响   总被引:1,自引:0,他引:1  
采用机械球磨(NaH/A1 Ti)和(NaH/A1 Ti-Zr)复合物的方法加氢制备了NaAIH4配位氢化物,系统研究了Ti、Ti-Zr催化剂以及不同加氢条件对其可逆储氢行为的影响.结果表明,对于NaH/A1体系的吸放氢性能,共掺金属Ti粉/Zr粉的催化作用比单独掺金属Ti粉的催化作用要好.随着加氢温度从85 ℃上升到140 ℃,体系的吸氢容量先增后减,并在120 ℃时达到最大值;同时,发现共掺Ti-Zr催化剂的复合物具有最佳的储氢性能,在120和85℃时的吸氢量分别为4.61%和3.52%(w),比仅掺Ti催化剂的复合物分别高出0.40%和0.70%(w)的吸氢量.随着加氢压力的增大,(NaH/A1 Ti-Zr)复合物的吸氢性能随之提高.XRD和DSC分析结果表明,NaA1H4体系的放氢过程明显发生两步分解反应,共掺Ti-Zr催化剂的复合物储氢性能优于单独掺Ti催化剂的原因是,共掺催化剂能有效改善NaA1H4体系吸放氢反应的动力学性能,并降低体系的放氢温度.  相似文献   

20.
退火处理对快淬贮氢合金显微组织及电化学性能的影响   总被引:9,自引:0,他引:9  
研究了退火处理对快淬贮氢合金电化学性能的影响。分析并讨论了退火处理的影响机制。快淬贮氢合金经退火处理后,P-C-T平台更为平坦,活化性能得到改善,最大放电容量和循环稳定性提高。通过XRD,SEM,DTA分析发现,退火处理后合金单胞体积有所增大,内应力降低,合金成分趋于均匀,从而使合金的电化学性能得到改善。加热过程中,合金在温度高于696℃发生再结晶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号