首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
采用微波等离子体技术研究了一氧化碳氢化制乙炔反应的产物选择性。对影响乙炔选择性的几个因素,如微波输入功率、反应物的比例和体系压力进行了研究。乙炔的选择性随着微波输入功率的增加,反应物比例和体系压力的降低而增大。在最佳条件下,乙炔的选择性可达到95.87%,甲烷选择性的变化规律和乙炔相反,乙烯和乙烷的选择性很低。等离子体中的电子温度(或能量)和密度采用了静电悬浮双探针诊断,电子密度和能量受微波输入功率和体系压力的影响。在反应中,电子能量决定化学反应是否进行,电子密度决定产物的组成。根据自由基反应理论解释了乙炔选择性在H2+CO等离子体化学反应中随影响因素的变化规律。  相似文献   

2.
等离子体化学   总被引:4,自引:0,他引:4  
等离子体化学是六十年代等离子体技术应用于化学领域而形成的一门新兴交叉学科。它建立在放电物理、放电化学、反应工程学和真空技术等基础学科之上,主要研究等离子体中化学反应原理、过程、产物结  相似文献   

3.
为考察金刚石形成氢终止表面的反应机制,采用微波氢等离子体处理以及电阻丝氢气气氛加热处理进行对比研究.利用光发射谱(OES)和漫反射傅里叶变换红外光谱(DRIFTS)分别表征了微波氢等离子体中的活性基团和金刚石表面氢终止浓度.结果表明,微波氢等离子体环境下,随着衬底温度、等离子体密度和能量的增加,温度至700 ℃ (800 W/3 kPa)时,等离子体中出现了明显的CH基团;相应地,金刚石表面氢终止浓度随温度、等离子体密度和能量的增加而增加.采用氢气气氛下电阻丝加热的方法同样形成了氢终止金刚石表面,表明微波等离子体处理金刚石表面形成氢终止主要源于由温度控制的表面化学反应,而非等离子体的物理刻蚀作用.氧终止金刚石表面形成氢终止的机制是表面C=O键在高于500 ℃时分解为CO,相应的悬挂键由氢原子或氢分子占据.  相似文献   

4.
等离子体化学发展二十多年来,在化学的许多领域里取得了重大进展。由于等离子体化学反应有许多优于普通化学反应的特点,所以引起了化学界的普遍重视。本文对低温等离子体在刻蚀和无机合成上的应用做一简略介绍。  相似文献   

5.
介质阻挡放电等离子体中·OH和HO2·自由基的数值模拟计算   总被引:4,自引:0,他引:4  
在介质阻挡放电等离子体N2/O2/H2O/HCHO体系中通过解Boitzmann方程,得到电子能量分布函数,利用得到的电子能量分布函数计算电子-分子碰撞反应速率常数.然后把有关的反应速率常数带入速率方程,计算得到该体系在介质阻挡放电时,·OH、HO2·和电子的浓度随时间的演变以及·OH、HO2·浓度随H2O、O2摩尔分数的变化,并将模拟结果与实验值进行了对比,两者符合得较好.  相似文献   

6.
介质阻挡放电等离子体中·OH和HO2·自由基的数值模拟计算   总被引:1,自引:0,他引:1  
在介质阻挡放电等离子体N2/O2/H2O/HCHO体系中通过解Boltzmann方程, 得到电子能量分布函数, 利用得到的电子能量分布函数计算电子-分子碰撞反应速率常数. 然后把有关的反应速率常数带入速率方程, 计算得到该体系在介质阻挡放电时,·OH、HO2·和电子的浓度随时间的演变以及·OH、HO2·浓度随H2O、O2摩尔分数的变化, 并将模拟结果与实验值进行了对比, 两者符合得较好.  相似文献   

7.
化学振荡反应研究简史   总被引:3,自引:0,他引:3  
我们所熟悉的化学反应是反应物的浓度随时间的变化而单调地下降;反应产物的浓度随时间的变化而单调地上升。但这不是唯一的化学反应现象。在某些化学反应体系中,当体系的某些状态参变数处在一定范围内时,体系的某个组分或若干组分的浓度可能发生周期性的变化。这是一类新的化学反应现象,我们称它为化学振荡反应。所谓化学振荡反应就是在一个化学反应体系中,某几个组分或中间产物的浓度随时间、空间而周期地变化的现象。由于它类似于钟表的周期性,所以又称它为化学钟,以示它与生物钟的密切  相似文献   

8.
非平衡等离子体能使几乎所有的分子激发、电离、自由基化,以至达到高活化状态.如果在化学反应发生的瞬时使产物脱离等离子体区,或迅速将产物捕获,实现高的反应选择性和得率是可能的.本文报道不用引发剂,在非平衡等离子体中甲烷直接氧化成甲醛的反应.  相似文献   

9.
C60负离子化学的研究进展   总被引:2,自引:0,他引:2  
郑敏  刘卫  高翔 《应用化学》2008,25(3):257-0
中性的C60是很强的缺电子体,主要和亲核试剂进行化学反应.与之不同的是C60经还原生成负离子后,由缺电子变为富含电子,具有很强的亲核性质,可与亲电试剂进行反应.由于这种电子结构的变化,C60负离子进行的反应从机理至产物均有可能与中性富勒烯不同.从而丰富了富勒烯的反应方式和富勒烯产物的类型.结合我们的工作综述了C60负离子化学的研究进展,对丰富富勒烯化学、扩展富勒烯衍生物的种类及制备方法具有一定意义.  相似文献   

10.
卓越的美国化学家和物理学家——欧文·朗缪尔   总被引:1,自引:0,他引:1  
欧文·朗缪尔(Irving Langmuir)是本世纪卓越的美国化学家和物理学家。他在1906—1956年期间的研究工作包括高温低压下的化学反应、表面化学、原子结构和化学键的电子理论、热离子发射、等离子体物  相似文献   

11.
The silacyclobutane radical cation is a prototype intermediate in chemical reactions involving Si based organic molecules. In the interest of its full characterization, the experimentally determined isotropic hyperfine coupling constants of the hydrogens in silacyclobutane radical cation (c-SiC(3)(+)) have raised some interesting questions, leading to different interpretations of the spectrum. To help resolve this discrepancy, we report very high-level theoretical results with coupled-cluster theory using its analytical, response density matrix procedure, and recently proposed basis sets that are specific to ESR. The detailed studies of geometries, basis set effects, and electron correlation tend to support the B3LYP/6-31G-based reassignment of the ESR spectrum of the c-SiC(3)(+) radical cation by F?ngstr?m et al.  相似文献   

12.
Thin polymer films were obtained by plasma polymerization of phenyl isothiocyanate. Polymerizations were carried out in rf (13.56 MHz) glow discharge generated in an electrodeless flow system. It was found that this monomer produces uniform films with a wide range of thicknesses, from hundreds of nanometers to tens of micrometers. The deposition rate appeared to be dependent on the substrate distance from the monomer inlet. The chemical structure of plasma polymer was characterized by using elemental analysis, IR spectroscopy, gas chromatography, and mass spectrometry. Elemental analysis showed that the composition of polymer depends on the substrate position in the reactor. It was observed that sulphur content decreased with increasing the substrate distance from the monomer inlet, whereas nitrogen content appeared to increase. The IR data revealed significant decrease in —NCS groups content in the polymer as compared with the monomer spectrum and indicated for the appearance of new absorption bands corresponding to the ? CN and C? H aliphatic, groups. The results account for a strong fragmentation of monomer in plasma involved in decomposition of isothiocyanate group and phenyl ring. The soluble fraction of polymeric material was examined by gas chromatography and then the separated products were analyzed by mass spectrometry. The soluble fraction was found to be composed of numerous low molecular-weight compounds. Identification of their structure revealed the presence of residual monomer, thiophenol, cyanobenzene, diphenyl, diphenyl sulphide, diphenyl disulphide, phenyl thiocyanate, dicyanobenzene, phenatroline, and some other oligomeric products. Formation of these compounds proves high susceptibility of ? NCS group in the monomer towards different fragmentation reactions. The surface free energy and electrical conductivity of polymer films were evaluated. The surface free energy value was very close to those estimated for plasma polymers deposited from other benzene derivatives. The low electrical conductivity manifested by the investigated polymeric material indicated for its dielectric character. The photoelectrical measurements revealed some photoconductivity effect in this material.  相似文献   

13.
Electrical discharges formed directly in liquid water include three general cases where (a) streamer-like plasma channels form in, but do not span, the electrode gap, (b) spark discharges produce transient plasma channels that span the electrode gap, and (c) arc discharges form plasma channels with relatively longer life times. Other factors including the input energy (from <1?J/pulse to >1?kJ/pulse) as well as solution properties and the rates of energy delivery affect the nature of the discharge channels. An understanding of the formation of chemical species, including the highly reactive hydroxyl radical and more stable molecular species such as hydrogen and hydrogen peroxide, in such plasma requires determination of temporal and spatial variations of temperature, pressure, plasma volume, and electrical characteristics including current, voltage (electric field), and plasma conductivity. In spark and arc discharges analysis of the physical processes has focused on hydrodynamic and thermal characterization, while only a limited amount of work has connected these physical processes to chemical reactions. On the other hand, the most successful model of the chemical reactions in streamer-like discharges relies on simple assumptions concerning the temperature and pressure in the plasma channels, while analysis of the physical processes is more limited. This paper reviews the literature on the mathematical modeling of electrical discharges in liquid water spanning the range from streamer-like to spark and arc discharges, and compares the properties and processes in these electrical discharges to those in electron beam radiolysis and ultrasound.  相似文献   

14.
The conversion of solar energy to thermal, chemical, or electrical energy attracts great attention in chemistry and physics. There has been a considerable effort for the efficient extraction of photons throughout the entire solar spectrum. In this work light energy was efficiently harvested by using a long-lived betaine photogenerated from an acridinium-based electron donor–acceptor dyad. The photothermal energy-conversion efficiency of the dyad is significantly enhanced by simultaneous illumination with blue (420–440 nm) and yellow (>480 nm) light in comparison with the sum of the conversion efficiencies for individual illumination with blue or yellow light. The enhanced photothermal effect is due to the photogenerated betaine, which absorbs longer-wavelength light than the dyad, and thus the dyad–betaine combination is promising for efficient photothermal energy conversion. The mechanisms of betaine generation and energy conversion are discussed on the basis of steady-state and transient spectral measurements.  相似文献   

15.
In this study, time-dependent, one-dimensional modeling of a surface dielectric barrier discharge (SDBD) device, driven by a sinusoidal voltage of amplitude 1–3 kV at 20 kHz, in argon is described. An SDBD device with two Cu-stripe electrodes, covered by the quartz dielectric and with the discharge gap of 20 × 10−3 m, was assumed, and the time-dependent, one-dimensional discharge parameters were simulated versus time across the plasma gap. The plasma device simulated in the given arrangement was constructed and used for biocompatible antibacterial/antimicrobial coating of plasmonic particle aerosol and compared with the coating strategy of the DBD plasma jet. Simulation results showed discharge consists of an electrical breakdown, occurring in each half-cycle of the AC voltage with an electron density of 1.4 × 1010 cm−3 and electric field strength of 4.5 × 105 Vm−1. With SDBD, the surface coating comprises spatially distributed particles of mean size 29 (11) nm, while with argon plasma jet, the nanoparticles are aggregated in clusters that are three times larger in size. Both coatings are crystalline and exhibit plasmonic features in the visible spectral region. It is expected that the particle aerosols are collected under the ionic wind, induced by the plasma electric fields, and it is assumed that this follows the dominant charging mechanisms of ions diffusion. The cold plasma strategy is appealing in a sense; it opens new venues at the nanoscale to deal with biomedical and surgical devices in a flexible processing environment.  相似文献   

16.
The ionization of tetraphenylporphyrin (TPP) in a laser-desorbed metal ion plasma is examined by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Competitive reaction pathways observed to generate abundant molecular ion species include electron detachment, cation attachment, charge exchange, metallation, and transmetallation in the positive ion mode and electron capture, metallation, and transmetallation in the negative ion mode. In general, cation attachment reactions dominate positive ion spectra below the laser irradiance threshold for plasma ignition, although the metallation product from [TPP]+ reaction with the metal atom, M, is observed. Negative ion products are not observed in the FT-ICR spectrum when a plasma is not formed. Under plasma ignition conditions, positive ion spectra include [TPP]+ formed by charge exchange with M+, which is also present in the spectrum. Negative ion spectra are dominated by [TPP]?; which is formed by attachment to thermal electrons generated in the plasma. Metallation reactions involving TPP and the metal substrate are examined. Positive ion metallation products are observed both in the absence of a plasma through reaction of [TPP]+ with M and by a second pathway under plasma ignition conditions through reaction of TPP with M+. In negative ion mode, metallation is only observed under plasma ignition conditions through reaction of [TPP]? with M. Observation of metallated products is found to be consistent with formation of stable metal oxidation states in the metallated porphyrin.  相似文献   

17.
In a recent paper [J. Am. Chem. Soc. 2000, 122, 2010], the authors explored variational principles that help one understand chemical reactivity on the basis of the changes in electron density associated with a chemical reaction. Here, similar methods are used to explore the effect changing the external potential has on chemical reactivity. Four new indices are defined: (1) a potential energy surface that results from the second-order truncation of the Taylor series in the external potential about some reference, Upsilon(R(1),R(2),.,R(M)()); (2) the stabilization energy for the equilibrium nuclear geometry (relative to some reference), Xi; (3) the flexibility, or "lability", of the molecule at equilibrium, Lambda; and (4) the proton hardness, Pi, which performs a role in the theory of Br?nsted-Lowry acids and bases that is similar to the role of the chemical hardness in the theory of Lewis acids and bases. Applications considered include the orientation of a molecule in an external electric field, molecular association reactions, and reactions between Br?nsted-Lowry acids and bases.  相似文献   

18.
The conversion of photon energy to chemical energy and vice versa requires the close arrangement of absorber/emitters and (electro)chemical reactions sites. This review considers local measurement techniques aiding in the design of efficient oxide systems for the utilization of light as energy source and as efficient detection principle. Artificial photoelectrochemical systems are often build on oxides as they are abundant and have semiconducting properties. However, no single oxide fulfills all requirements for an efficient conversion of sunlight to chemical energy and thus complex oxides are explored. These oxides might be obtained by doping oxides with other metal cations or by combining different oxides for absorbance and catalyzing the desired reaction, mainly water splitting. Due to the enormous amount of possible combinations combinatorial search for new material systems has been pursued and accelerated around the world making use of local photoelectrochemical characterization techniques in the screening step. Local detection schemes based on scanning electrochemical microscopy and scanning electrochemical cell microscopy also provide details about the kinetics for heterogeneous charge transfer and the release of soluble reaction products. During the recent years the scanning probe methods have been complemented by local detection of fluorescent reaction products that are formed by heterogeneous electron transfer reactions from and non-fluorescent precursor molecules. Such detection is possible with single molecule sensitivity and spatial resolution exceeding the diffraction limit (superresolution). Such approaches enabled the discovery of population within ensembles of metal oxide nanoparticles that are distinguished by the location and reactivity of their reaction sites. Optical techniques for measuring Faradaic currents hold great promise for the measurement of very low currents beyond the study of photoelectrochemistry of metal oxides.  相似文献   

19.
化学气相沉积法合成高结晶度的三元系Cd1-xZnxS纳米线   总被引:1,自引:0,他引:1  
以硫化锌、硫化镉和活性碳粉作为反应物,利用化学气相沉积方法成功合成了单晶Cd1-xZnxS纳米线.为了解产物的结构、形貌、组分、微结构以及声子振动模式,对样品进行了扫描电镜、透射电镜、X射线衍射、能谱分析以及拉曼光谱分析.分析显示合成的纳米线为六方铅锌矿结构,生长方向沿着[210]方向,长度均为10μm,直径在80-100 nm之间,x的值约为0.2.拉曼光谱分析显示产物的拉曼峰位与纯CdS相比发生了蓝移.  相似文献   

20.
The possibility of modifying chemical properties of organic liquids under the influence of strong electric fields created by pulsed electrical discharges with energies on the order of J/pulse is quite intriguing. Considering the majority of carbon-based materials today are almost exclusively synthesized from gaseous precursors, the realization of this process even seems necessary. The goal of this study was to examine the possibility of synthesizing carbon materials using streamer-like electrical discharges in three different organic liquids: methanol, acetone and pentane. The morphology of the deposited carbon was imaged using scanning electron microscopy whereas energy dispersive X-ray spectroscopy was used to analyze chemical composition of the resulting films and particles. The results have shown that electrical discharges in all three liquids result in the carbon deposition on the high-voltage electrode. Depending on the type of the organic liquid, the thickness of the carbon layer deposited on the electrode can rise 10?C70?% above baseline levels and the deposition is accompanied by a change in surface morphology of the electrode. Electrical discharges in acetone and pentane also result in the deposition of solid carbon particles in the bulk liquid. The mechanism for the formation of solid carbon byproducts was correlated with chemical reactions in plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号