首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrospray ionization (ES) mass spectrum of a trisodium azacryptate derived from a template reaction of sodium 2,6-diformyl-4-methylphenolate (sdmp) with 2,2′,2″-triaminoethylamine (tren) was investigated and compared with those by fast atom bombardment (FAB), atmospheric pressure chemical ionization (APCI) and electronic ionization (EI) methods. Dinuclear transition metal complexes of this hexaimine macrobicyclic ligand obtained by transmetallation were also studied by ES mass spectra. An [M2L]+ species has been observed for divalent metal complexes, and an [MLH]+ species for a trivalent metal complex. The possible mechanism of the fragmentation process is discussed.  相似文献   

2.
Summary Californium-252 plasma desorption mass spectra were recorded for complexes of the anions of various thio-and seleno-semicarbazones of 3-acetylpyridines(1–4) with the transition metal ions iron(III) and cobalt(II). Positive ion spectra gave clear evidence of the cation present and fragmentation with loss of ligands or parts of ligands was straightforward. Negative ion spectra likewise provided evidence of the intact anion except with tetracoordinate metal halide systems [MX4] which lost one or more halide atoms. Evidence of fragmentation of the ligand and recombination of the fragments with the metal ion was also observed in the negative ion mode. Spectra were used to revise the structure of a complex previously reported as [FeLCl2](1) to [FeL2]+[FeCl4].  相似文献   

3.
Experimental data on correlations between the directions of the incident primary ion and the ejected protonated [M + H]+ and alkali metal adduct [M + Cs]+ molecules for three peptide samples with an incident beam of 72.3 MeV 127I14+ ions are reported. Measurements were carried out in a linear time-of-flight mass spectrometer by monitoring the secondary ion yield as a function of electrostatic deflection in a direction perpendicular to the spectrometer axis. No difference was observed in the direction in which [M + H]+ and [M + Cs]+ ionic species are preferentially desorbed. The results obtained suggest that alkali metal cation attachment to biomolecules in plasma desorption mass spectrometry is realized in a close spatial location and time interval with protonation. Formation of ion-molecule complexes occurs at an early stage of the desorption event and precedes their ejection into the gas phase.  相似文献   

4.
Secondary ion mass spectra obtained by [Xe]+ bombardment are compared with those obtained by [Ar]+ bombardment. Although [Ar]+ ions are commonly used as primary ions in secondary ion mass spectrometry for organic compounds, [Xe]+ ions seem better as primary ions because they give a larger sputtering yield for a metal substrate than [Ar]+ ions. Cationized molecular intensities of sucrose, raffinose and stachyose, and quasimolecular ion intensities of tuftsin and eledoisin related peptide are investigated using [Xe]+ and [Ar]+ bombardments. The observed molecular species are 2–4 times more intense for [Xe]+ bombardment than for [Ar]+ bombardment, although the secondary ion mass spectra are almost the same in both cases.  相似文献   

5.
The pK a values of dimethyl 2-dimethoxyphosphoryl malonate and of its thiophosphoryl analog have been measured by transmetallation using the inclusion complex of Li+ with [2.1.1]-cryptand as the metallation agent.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 410–411, February, 1993.  相似文献   

6.
Using the lanthanide ion praseodymium, Pr(III), metallated ion formation and electron transfer dissociation (ETD) were studied for 25 biological and model acidic peptides. For chain lengths of seven or more residues, even highly acidic peptides that can be difficult to protonate by electrospray ionization will metallate and undergo abundant ETD fragmentation. Peptides composed of predominantly acidic residues form only the deprotonated ion, [M + Pr ‐ H]2+; this ion yields near complete ETD sequence coverage for larger peptides. Peptides with a mixture of acidic and neutral residues generate [M + Pr]3+, which cleaves between every residue for many peptides. Acidic peptides that contain at least one residue with a basic side chain also produce the protonated ion, [M + Pr + H]4+; this ion undergoes the most extensive sequence coverage by ETD. Primarily metallated and non‐metallated c‐ and z‐ions form for all peptides investigated. Metal adducted product ions are only present when at least half of the peptide sequence can be incorporated into the ion; this suggests that the metal ion simultaneously attaches to more than one acidic site. The only site consistently lacking dissociation is at the N‐terminal side of a proline residue. Increasing peptide chain length generates more backbone cleavage for metal‐peptide complexes with the same charge state. For acidic peptides with the same length, increasing the precursor ion charge state from 2+ to 3+ also leads to more cleavage. The results of this study indicate that highly acidic peptides can be sequenced by ETD of complexes formed with Pr(III). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
Geometrically isomeric dicarboxylic acids, such as maleic and fumaric acid and their methyl homologues, and the isomeric phthalic acids, have been investigated using fast atom bombardment, field ionization and field desorption mass spectrometry. The most intense peak in the positive ion fast atom bombardment spectra corresponds with the [M + H]+ ion. This ion, when derived from the E -acids, tragments either by successive loss of water and carbon monoxide or by elimination of carbon dioxide. In the case of the Z -acids only elimination of water from the [M + H]+ ions is observed to occur to a significant extent. The same is true for the [M + H]+ ions of the isomeric phthalic acids, that is the [M + H] ions derived from iso- and terephthalic acid exhibit more fragmentation than those of phthalic acid. All these acids undergo much less fragmentation upon field ionization, where not only abundant [M + H]+ ions, but also abundant [M] ions, are observed. Upon field desorption only the [M + H]+ and [M + Na]+ ions are observed under the measuring conditions. Negative ion fast atom bombardment spectra of the acids mentioned have also been recorded. In addition to the most abundant [M? H]? ions relatively intense peaks are observed, which correspond with the [M]?˙ ions. The fragmentations observed for these ions appear to be quite different from those reported in an earlier electron impact study and in a recent atmospheric pressure ionization investigation.  相似文献   

8.
N-Acetylcysteine and nine N-acetylcysteine conjugates of synthetic origin were characterized by positive- and negative-ion plasma desorption mass Spectrometry. For sample preparation the electrospray technique and the nitrocellulose spin deposition technique were applied. The fragmentation of these compounds, which are best seen as S-substituted desaminoglycylcysteine dipeptides, shows a similar behaviour to that of linear peptides. In the positive-ion mass spectra intense protonated molecular ion peaks are observed. In addition, several sequence-specific fragment ions (A+, B+, [Y + 2H]+, Z+), immonium ions (I+) and a diagnostic fragment ion for mercap-turic acids (RM+) are detected. The negative-ion mass spectra exhibit deprotonated molecular ions and in contrast only one fragment ion corresponding to side-chain specific cleavage ([RXS]?) representing the xenobiotic moiety. In the case of a low alkali metal concentration on the target, cluster molecular ions of the [nM + H]+ or [nM - H]? ion type (n = 1-3) are observed. The analysis of an equimolar mixture of eight N-acetylcysteine conjugates shows different quasi-molecular ion yields for the positive- and negative-ion spectra.  相似文献   

9.
Organophosphate esters (OPEs) are chemical compounds incorporated into materials as flame‐proof and/or plasticizing agents. In this work, 13 non‐halogenated and 5 halogenated OPEs were studied. Their mass spectra were interpreted and compared in terms of fragmentation patterns and dominant ions via various ionization techniques [electron ionization (EI) and chemical ionization (CI) under vacuum and corona discharge atmospheric pressure chemical ionization (APCI)] on gas chromatography coupled to mass spectrometry (GC‐MS). The novelty of this paper relies on the investigation of APCI technique for the analysis of OPEs via favored protonation mechanism, where the mass spectra were mostly dominated by the quasi‐molecular ion [M + H]+. The EI mass spectra were dominated by ions such as [H4PO4]+, [M–R]+, [M–Cl]+, and [M–Br]+, and for some non‐halogenated aryl OPEs, [M]+● was also observed. The CI mass spectra in positive mode were dominated by [M + H]+ and sometimes by [M–R]+, while in negative mode, [M–R] and more particularly [X] and [X2]‐● were mainly observed for the halogenated OPEs. Both EI and APCI techniques showed promising results for further development of instrumental method operating in selective reaction monitoring mode. Instrumental detection limits by using APCI mode were 2.5 to 25 times lower than using EI mode for the non‐brominated OPEs, while they were determined at 50‐100 times lower by the APCI mode than by the EI mode, for the two brominated OPEs. The method was applied to fish samples, and monitored transitions by using APCI mode showed higher specificity but lower stability compared with EI mode. The sensitivity in terms of signal‐to‐noise ratio varying from one compound to another. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
We report the binding geometries of the isomers that are formed when the hydrogen oxalate ((CO2)2H=HOx) anion attaches to dinuclear coinage metal phosphine complexes of the form [M1M2dcpm2(HOx)]+ with M=Cu, Ag and dcpm=bis(dicyclohexylphosphino)methane, abbreviated [MM]+ . These structures are established by comparison of isomer-selective experimental vibrational band patterns displayed by the cryogenically cooled and N2-tagged cations with DFT calculations of the predicted spectra for various local minima. Two isomeric classes are identified that feature either attachment of the carboxylate oxygen atoms to the two metal centers (end-on docking) or attachment of oxygen atoms on different carbon atoms asymmetrically to the metal ions (side-on docking). Within each class, there are additional isomeric variations according to the orientation of the OH group. This behavior indicates that HOx undergoes strong and directional coordination to [CuCu]+ but adopts a more flexible coordination to [AgAg]+ . Infrared spectra of the bare ions, fragmentation thresholds and ion mobility measurements are reported to explore the behaviors of the complexes at ambient temperature.  相似文献   

11.
The thermal gas-phase reactions of [Al2VO5]+ and [AlV2O6]+ with methane have been explored by using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry complemented by high-level quantum chemical calculations. Both cluster ions chemisorbed methane as the major reaction channels at room temperature. [Al2VO5]+ could break only one C−H bond to liberate CH3, whereas [AlV2O6]+ exhibited higher oxidizing ability such that it brings about the selective generation of formaldehyde. Mechanistic aspects are revealed and the crucial roles of the metal centers are discussed.  相似文献   

12.
The collisional activation spectra of monosaccharide ions formed by [Li]+, [Na]+ and [K]+ ion attachment under field desorption conditions are reported. It is shown that the elimination of the alkali ions is determined by the alkali ion affinities of the molecules (M) and competes with a fragmentation of M which is almost independent of the alkali ion attached. Correspondingly the alkali ion is predominantly retained in the fragment ions. The usefulness of this method for the differentiation of underivatized isomers is demonstrated.  相似文献   

13.
Analyses of a series of nitroaromatic compounds using fast atom bombardment (FAB) mass spectrometry are discussed. An interesting ion-molecule reaction leading to [M + O ? H]? ions is observed in the negative ion FAB spectra. Evidence from linked-scan and collision-induced dissociation spectra proved that [M + O ? H]? ions are produced by the following reaction: M + NO2? → [M + NO2]? → [M + O ? H]?. These experiments also showed that M ions are produced in part by the exchange of an electron between M and NO2? species. All samples showed M, [M ? H]? or both ions in their negative ion FAB spectra. Not all analytes studied showed either [M + H]+ and/or M+˙ in the positive ion FAB spectra. No M+˙ ions were observed for ions having ionization energies above ~9 eV.  相似文献   

14.
The electrospray mass spectra of gramicidin S cations that originated from 0.2 M solutions of 18 nitrogen-containing bases were examined. The relative abundances of the [M + 2H]2+ to the [M + H]+ ion were found to correlate not with the solution pH but with the proton affinities of the bases. It is postulated that some of the [M + 2H]2+ and the [M + H]+ ions exist as adducts with the nitrogen bases in solution, these adducts being desorbed into the gas phase during electrospray and dissociated in the lens region via collision-induced dissociations to yield apparent proton attachment spectra. Some of these adducts were observed under nominally zero collision energy conditions.  相似文献   

15.
The formation of the [M? 43]+ ion in equilenin is due mainly to elimination of Me radical from the [M? CO]+ ion and, to a lesser extent, to CO loss from the [M? Me]+ ion. In 14β-isoequilenin the [M? CO]+ ion is absent, and the formation of [M? 43]+ occurs via the [M? Me]+ ion. This makes the determination of the mode of junction of the rings C and D in the equilenin series possible, using high resolution mass spectra, even when only one stereoisomer is available.  相似文献   

16.
In this study, we have investigated the fragmentation of the widely used steroidal pharmaceutical drugs (n = 14), complexed by a singly charged proton or alkali metal ion (Li+, Na+, K+) using Ion trap and quadrupole time-of-flight mass spectrometers. Spectra were collected by LC-MS/MS analysis using system automated collision energy i.e., of 25–60 eV. Theoretical calculations were also calculated using DFT software. The metal complexes showed different fragmentation pathways not commonly observed for protonated compounds. There was a distinct difference observed in the relative intensities of some common fragments for free vs. metallated drugs. Some major fragments from protonated and lithium adducts showed close resemblance, while sodium and potassium adducts showed different fragments. Theoretical calculations showed a distinct difference in the position of attachment of proton and metals. This adducts ion fragmentation information will be helpful for the identification of these compounds in complex samples.  相似文献   

17.
The gas-phase H/D exchange reactions of arginine (R) and arginine-containing di- and tri-peptide (gly-arg (GR), arg-gly (RG), gly-gly-arg (GGR), gly-arg-gly (GRG) and arg-gly-gly (RGG)) [M+H]+ ions with deuterated ammonia (ND3) were investigated by using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR), ion mobility-mass spectrometry (IM-MS), ab initio and density functional theory-based molecular orbital calculations and molecular modeling. Three exchanges are observed for arginine and arginine-containing tri-peptide [M+H]+ ions, whereas the di-peptide [M+H]+ ions undergo a single H/D exchange. In addition, C-terminal methylation blocks H/D exchange of arginine and the arginine-containing peptide [M+H]+ ions, and a single H/D exchange is observed for N-terminal acetylated arginine [M+H]+ ions. A general mechanism for H/D exchange involving a collision complex that is best described as a “solvated salt-bridge” structure is proposed.  相似文献   

18.
The gas‐phase hydration of Mg2+ complexes with deprotonated uracil ( U ), thymine ( T ), uridine ( U r , uracil riboside), and thymidine ( T dr , thymine deoxyriboside) was studied. The aim of the work was to analyze the hydration of product ions (eg, [2 U ‐H+Mg]+) formed as a result of the collision induced dissociation of the respective parent ion (eg, [3 U r ‐H+Mg]+). The efficiency of gas‐phase hydration of the ions [2 U ‐H+Mg]+ and [2 T ‐H+Mg]+ was similar. However, the efficiency of gas‐phase hydration of the ion [ U + U r ‐H+Mg]+ was much higher than that of gas‐phase hydration of the ion [ T + T dr ‐H+Mg]+. On the basis of the mass spectra obtained and the performed molecular modelling, it was concluded that in the ion [ T + T dr ‐H+Mg]+, we deal with a steric hindrance due to the presence of a sugar moiety, which affects water attachment. In the ion [ U + U r ‐H+Mg]+, the position of the sugar moiety does not affect water attachment.  相似文献   

19.
The effect of two completely different mobile phase compositions, reversed-phase acetonitrile-water + ammonium acetate and normal-phase cyclohexane, were compared in filament-on thermospray liquid chromatography-mass spectrometry (LC-MS) for the determination of selected chlorinated herbicides such as chloroatrazines and chlorinated phenoxyacetic acids. By using acetonitrile-water + 0.05 M ammonium acetate mixtures in positive ion mode thermospray LC-MS, the chloroatrazine herbicides showed the acetonitrile adduct ion [M + (CH3CN)H]+ as the base peak, whereas the chlorinated phenoxyacetic acids showed no signal. In contrast, when cyclohexane, which is reported for the first time as an eluent in the thermospray technique, was used as the mobile phase the chlorinated phenoxyacetic acid herbicides exhibited [M – H]+, [M – Cl]+ and M+˙ as the main ions. Negative ion mode thermospray LC-MS showed [M – H]? as the base peak for the chloroatrazines in the different mobile phases, whereas the chlorinated phenoxyacetic acids exhibited [M + H]?, [M + Cl]? or [M – HCl]? as the base peaks in cyclohexane and [M + acetate]? in acetonitrile-water-ammonium acetate.  相似文献   

20.
Collision-induced decompositions (CIDs) of the [M + H]+, [M + Li]+, [M + Na]+, [M + K]+ and [M + Ag]+ ions of some methyl-6-deoxy-6-bromo-α-D-glucopyranoside derivatives are discussed. Elimination of MeOH resulting in the glycosidyl cation is the predominant reaction of the [M + H]+ ion. This process is completely suppressed during CID of the metal-cationized species, which, surprisingly, show elimination of the added metal in the form of RCOO-metal and metal bromide in the case of the ester derivatives. These reactions appear to be assisted by neighbouring group participation. Because of the proximity of the C(3)-oxygen with C(6), the benzyl ether derivative is characterized by the loss of PhCH2Br from the [M + metal]+ ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号