首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micro/nanoscale magnesium silicate hollow spheres were synthesized by using silica colloidal spheres as a chemical template in one pot. The hollow spherical structure, consisting of well‐separated nanoscale units, was microscale as a whole and could be easily handled in solution. The as‐synthesized magnesium silicate hollow spheres with large specific surface area showed availability for the removal of organic and heavy‐metal ions efficiently from waste water. Importantly, the micro/nanoscale magnesium silicate hollow spheres that had adsorbed organic pollutants could be regenerated by calcination and used repeatedly in pollutant removal. Magnesium silicate hollow spheres synthesized by a scaled‐up chemical template method may have potential applications in removing cationic dyes and heavy‐metal ions from waste water.  相似文献   

2.
Hollow mesoporous structures have recently aroused intense research interest owing to their unique structural features. Herein, an effective and precisely controlled synthesis of hollow rare‐earth silicate spheres with mesoporous shells is reported for the first time, produced by a simple hydrothermal method, using silica spheres as the silica precursors. The as‐prepared hollow rare‐earth silicate spheres have large specific surface area, high pore volume, and controllable structure parameters. The results demonstrate that the selection of the chelating reagent plays critical roles in forming the hollow mesoporous structures. In addition, a simple and low‐energy‐consuming approach to synthesize highly stable and dispersive gold nanoparticle–yttrium silicate (AuNPs/YSiO) hollow nanocomposites has also been developed. The reduction of 4‐nitrophenol with AuNPs/YSiO hollow nanocomposites as the catalyst has clearly demonstrated that the hollow rare‐earth silicate spheres are good carriers for Au nanoparticles. This strategy can be extended as a general approach to prepare multifunctional yolk–shell structures with diverse compositions and morphologies simply by replacing silica spheres with silica‐coated nanocomposites.  相似文献   

3.
董丽娟  姚奇志  马芳  金谷 《应用化学》2011,28(6):678-682
以CaCO3为模板,正硅酸四乙酯(TEOS)为硅源,用比较简单的方法制备了中空SiO2;然后将海藻酸钠嫁接在氨基化的中空SiO2表面;再利用海藻酸盐与钙离子的作用,在中空SiO2表面形成一个凝胶化层,制得海藻酸盐凝胶化的中空SiO2微球,粒径为1~2 μm。 采用FTIR、XRD、SEM、TEM和TGA等测试技术对微球进行表征。 此微球成功地用于柔红霉素的载负和缓释,最大载负率和载药量分别为55.6%和27.8%;缓释结果表明,海藻酸盐凝胶化层的存在,能更有效控制柔红霉素缓慢的释放,这种凝胶化载体对药效强、毒性较大的药物有潜在的临床应用前景。  相似文献   

4.
余承忠  范杰  赵东元 《化学学报》2002,60(8):1357-1360
使用非离子型嵌段高分子表面活性剂为模板剂,在无机盐的作用下,合成了直 径在2~4 mm、高度有序、立方相的介孔氧化硅SBA-16球。利用无机盐来调变无机 /有机物种之间的作用力和自组装能力,不仅在介观尺寸上提高了所合成介孔材料 的有序程度,而且在宏观上控制了介孔材料的形貌。经焙烧后的SBA-16球材料比表 面积为750 m~2/g,孔容为0.52 cm~3/g,孔径为7.8 nm。具有大孔径的SBA-16球材 料可以更方便地应用于大分子吸附和分离等领域。  相似文献   

5.
熊婉淇  彭博  段爱红  袁黎明 《色谱》2021,39(6):607-613
无机介孔硅球因其具有足够的机械强度、热稳定性,以及适应多种流动相的优点,成为高效液相色谱(HPLC)柱填料中使用最广泛和最重要的材料。但在此研究领域中,并未见球形的全无机手性硅胶用作HPLC手性固定相。该文以无机球形介孔硅胶作为研究对象,通过堆砌硅珠法,以硅溶胶为原料,L-谷氨酸(L-Glu)为手性源,在手性环境中制造出脲醛树脂与胶体二氧化硅混合的小球,在550 ℃高温下煅烧除去树脂部分,制备基于L-Glu的无机介孔硅胶球。通过元素分析、红外光谱、扫描电镜、透射电镜和氮气吸附等表征证明这是一种具有规则球形的手性硅胶球,其手性来源于硅胶球自身的骨架和孔结构。将L-Glu手性硅胶球作为固定相制备了HPLC色谱柱,以正己烷-异丙醇(9∶1, v/v)作为流动相,流速为0.1 mL/min,考察了该手性柱对一系列外消旋化合物的拆分性能。实验表明,该手性柱拆分了15种外消旋化合物,其中特罗格尔碱、吡喹酮、3-苄氧基-1,2-丙二醇、1,2-环氧己烷、3-羟基-2-丁酮、2-甲基四氢呋喃-3-酮、异丙基缩水甘油醚达到基线分离;还分离了10种苯系位置异构体,o,m,p-氨基苯酚、o,p-氯苯酚、o,m,p-碘苯胺、o,m,p-甲苯胺、o,m,p-二硝基苯、o,m,p-氯苯胺、o,m,p-硝基苯酚、o,m,p-溴苯胺达到基线分离。实验表明,L-Glu手性硅胶球在手性分离方面具有良好的可行性,与普通硅胶相比不需要进一步修饰就可以有较好的手性分离效果,是一种低成本、制备便捷的手性无机硅胶固定相。  相似文献   

6.
An efficient and facile method to synthesise silica nanorattles with multiple noble metal (Au and Pd) cores by a simultaneous etching and growth route has been developed. In this strategy, a dual‐functional alkylaminosilane was adopted to form the middle layer of solid organic–inorganic hybrid solid‐silica spheres (HSSSs), which enabled the selective etching of the middle hybrid layer of the HSSSs and the in situ growth of metal nanoparticles (NPs) inside the cavity in a one‐step hydrothermal reaction. By adjusting the pH values of the reaction system, the metal NPs could be grown exclusively inside the silica nanorattles, resulting in a high atomic utilisation of the noble metals. The size and number of Au cores were tunable by manipulating the initial concentration of HAuCl4. The prepared silica nanorattles with Au cores were successfully applied to the catalytic reduction of 4‐nitrophenol and showed high catalytic activity and cycle stability. Catalysts with multiple gold cores exhibited superior catalytic activity to those with a single gold core, probably because they possess smaller Au cores with greater surface area.  相似文献   

7.
This study presents a very simple method to fabricate organic–inorganic asymmetric colloid spheres. In this approach, when silica particles are used as the Pickering emulsifier to stabilize the monomer droplets (styrene) in water via acid–base interaction between silica particles and auxiliary monomer (1‐vinylimidazole), the exposed surfaces of silica particles are very easy to be locally modified with 3‐(trimethoxysilyl)propyl methacrylate. When water‐based initiator is added, polystyrene–silica asymmetric colloid spheres are highly yielded. The sizes of silica and polymer particles can be tunable. These organic–inorganic anisotropic colloid spheres can self‐assemble into an interesting thickness‐dependent film. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Microporous organic networks (MONs) have been considered as an ideal substrate to stabilize active metal nanoparticles. However, the development of highly water‐dispersible hollow MONs nanostructures which can serve as both the reducing agent and stabilizer is highly desirable but still challenging. Here we report a template‐assisted method to synthesize hollow microporous organic network (H‐MON) spheres using silica spheres as hard template and 1,3,5‐triethynylbenzene as the building blocks through a Glaser coupling reaction. The obtained water‐dispersible H‐MON spheres bearing sp‐ and sp2‐hybridized carbon atoms possess a highly conjugated electronic structure and show low reduction potential; thus, they can serve as a reducing agent and stabilizer for electroless deposition of highly dispersed Pd clusters to form a Pd/H‐MON spherical hollow nanocomposite. Benefitting from their high porosity, large surface area, and excellent solution dispersibility, the as‐prepared Pd/H‐MON hollow nanocomposite exhibits a high catalytic performance and recyclability toward the reduction of 4‐nitrophenol.  相似文献   

9.
Raspberrylike organic/inorganic composite spheres are prepared by stepwise electrostatic assembly of polyelectrolytes and silica nanoparticles onto monodisperse polystyrene spheres. Hierarchically structured porous films of silica hollow spheres are fabricated from these composite spheres by layer‐by‐layer assembly with polyelectrolytes followed by calcination. The morphologies of the raspberrylike organic/inorganic composite spheres and the derived hierarchically structured porous films are observed by scanning and transmission electron microscopy. The surface properties of these films are investigated by measuring their water contact angles, water‐spreading speed, and antifogging properties. The results show that such hierarchically structured porous films of silica hollow spheres have unique superhydrophilic and antifogging properties. Finally, the formation mechanism of these nanostructures and property–structure relationships are discussed in detail on the basis of experimental observations.  相似文献   

10.
General synthesis of mesoporous spheres of metal oxides and phosphates   总被引:7,自引:0,他引:7  
Monodisperse and high-surface-area mesoporous inorganic spheres of various compositions including metal oxides, mixed oxides, and metal phosphates are prepared by templating mesoporous carbon spheres which are replicated from spherical mesoporous silica. Due to the rigid and thermally stable framework of carbon template, the crystalline phases of the obtained metal oxide spheres can be readily tailored by controlling crystalline temperatures. Moreover, the sphere morphologies can be changed from solid structure to hollow structure in some cases by changing the polarity of the precursor, due to the hydrophobic nature of carbon template.  相似文献   

11.
Current materials used for bone regeneration are usually bioactive ceramics or glasses. Although they bond to bone, they are brittle. There is a need for new materials that can combine bioactivity with toughness and controlled biodegradation. Sol‐gel hybrids have the potential to do this through their nanoscale interpenetrating networks (IPN) of inorganic and organic components. Poly(γ‐glutamic acid) (γ‐PGA) was introduced into the sol‐gel process to produce a hybrid of γ‐PGA and bioactive silica. Calcium is an important element for bone regeneration but calcium sources that are used traditionally in the sol‐gel process, such as Ca salts, do not allow Ca incorporation into the silicate network during low‐temperature processing. The hypothesis for this study was that using calcium methoxyethoxide (CME) as the Ca source would allow Ca incorporation into the silicate component of the hybrid at room temperature. The produced hybrids would have improved mechanical properties and controlled degradation compared with hybrids of calcium chloride (CaCl2), in which the Ca is not incorporated into the silicate network. Class II hybrids, with covalent bonds between the inorganic and organic species, were synthesised by using organosilane. Calcium incorporation in both the organic and inorganic IPNs of the hybrid was improved when CME was used. This was clearly observed by using FTIR and solid‐state NMR spectroscopy, which showed ionic cross‐linking of γ‐PGA by Ca and a lower degree of condensation of the Si species compared with the hybrids made with CaCl2 as the Ca source. The ionic cross‐linking of γ‐PGA by Ca resulted in excellent compressive strength and reduced elastic modulus as measured by compressive testing and nanoindentation, respectively. All hybrids showed bioactivity as hydroxyapatite (HA) was formed after immersion in simulated body fluid (SBF).  相似文献   

12.
Porous hollow nanostructures have attracted intensive interest owing to their unique structure and promising applications in various fields. A facile hydrothermal synthesis has been developed to prepare porous hollow nanostructures of silicate materials through a sacrificial‐templating process. The key factors, such as the concentration of the free metal cation and the alkalinity of the solution, are discussed. Porous hollow nanostructures of magnesium silicate, nickel silicate, and iron silicate have been successfully prepared by using SiO2 spheres as the template, as well as a silicon source. Several yolk–shell structures have also been fabricated by a similar process that uses silica‐coated composite particles as a template. As‐prepared mesoporous magnesium silicate hollow spheres showed an excellent ability to remove Pb2+ ions in water treatment owing to their large specific surface and unique structures.  相似文献   

13.
This study presents a new synthetic method for fabricating yolk@shell‐structured barium magnesium silicate (BMS) particles through a template‐engaged solid‐state reaction. First, as the core template, (BaMg)CO3 spherical particles were prepared based on the coprecipitation of Ba2+ and Mg2+. These core particles were then uniformly shelled with silica (SiO2) by using CTAB as the structure‐directing template to form (BaMg)CO3@SiO2 particles with a core@shell structure. The (BaMg)CO3@SiO2 particles were then converted to yolk@shell barium magnesium silicate (BMS) particles by an interfacial solid‐state reaction between the (BaMg)CO3 (core) and the SiO2 (shell) at 750 °C. During this interfacial solid‐state reaction, Kirkendall diffusion contributed to the formation of yolk@shell BMS particles. Thus, the synthetic temperature for the (BaMg)SiO4:Eu3+ phosphor is significantly reduced from 1200 °C with the conventional method to 750 °C with the proposed method. In addition, the photoluminescence intensity of the yolk@shell (BaMg)SiO4:Eu3+phosphor was found to be 9.8 times higher than that of the conventional (BaMg)SiO4:Eu3+ phosphor. The higher absorption of excitation light by the structure of the yolk@shell phosphor is induced by multiple light‐reflection and ‐scattering events in the interstitial void between the yolk and the shell. When preparing the yolk@shell (BaMg)SiO4:Eu3+ phosphor, a hydrogen environment for the solid‐state reaction results in higher photoluminescence efficiency than nitrogen and air environments. The proposed synthetic method can be easily extended to the synthesis of other yolk@shell multicomponent metal silicates.  相似文献   

14.
A new preparation method for porous silica particles was developed using activated silica sols which are called nano-silica solutions in this paper. Several kinds of organic and inorganic acids are employed to neutralize diluted sodium silicate solutions to form the nano-silica solutions: formic acid, acetic acid, propionic acid, oxalic acid, succinic acid, dl-malic acid, citric acid, and tricarballylic acid as carboxylic acids, and sulfuric acid and hydrochloric acid as inorganic acids. The effect of salts in the nano-silica solution is also studied. The products were investigated using a field emission scanning electron microscope, an X-ray diffractometer, the nitrogen adsorption technique, and a mercury porosimeter. Microporous silicas were produced when carboxylic acids were applied; the formation of micropores was influenced by the pH of the nano-silica solutions and molecular sizes of the carboxylic acids. Addition of a salt in a citric acid solution increased the mesopore volume. Macropores were formed when inorganic acids including salts were applied; the salt nanoparticles which were crystallized in silica spheres acted as templates. The anion types and salt concentrations in the nano-silica solutions affected the aggregation condition of silica nanoparticles, following the Schulze-Hardy rule.  相似文献   

15.
通过简单的溶胶凝胶法在相同体系中可控合成了新颖有序的二氧化硅纳米管和空心球,对制备二氧化硅纳米管的多种反应条件进行了系统研究。发现反应时间、溶液中水和乙醇比例、搅拌和滴加速度对形成管状结构都有着重要影响。同时,纳米管的形成机理研究表明,在醇水混合溶液中柠檬酸三铵晶体为细柱状形貌,其作为重要的结构导向剂为二氧化硅胶晶附着提供模板,从而形成管状结构,二氧化硅空心球也显示了相似的形成过程。  相似文献   

16.
The role of polydimethylsiloxane (PDMS) as a compatibilizer of polyimide/silica hybrid composites was investigated. Introduction of PDMS into a polyimide matrix retards the phase separation of hybrid composites and also prevents the formation of high‐molecular‐weight silicate. PDMS interacts with silica because of the similarity of its structure with the sol‐gel glass matrix of the silica precursor, indicating that poly(imide siloxane)/silica might be a good candidate material for organic/inorganic hybrid composites.  相似文献   

17.
We demonstrated the use of electrohydrodynamic atomization to prepare uniform-sized emulsion droplets in which equal spheres of silica or polystyrene were dispersed. The size of the emulsion droplets was easily controlled by the electric field strength and the flow rate, independently of the diameter of the nozzles. During the evaporation of solvent in the droplets, spherical colloidal crystals were formed by self-assembly of the monodisperse colloidal spheres. The diameter of the spherical colloidal crystals was in the range of 10-40 microm. Depending on the stability of colloidal particles, the morphology of the self-assembled structure was varied. In particular, silica spheres in ethanol droplets were self-assembled into compactly packed silica colloidal crystals in spherical shapes, whereas polystyrene latex spheres in toluene droplets self-assembled into spherical colloidal crystal shells with hollow cores. The silica colloidal assemblies reflected diffraction colors according to the three-dimensionally ordered arrangement of silica spheres.  相似文献   

18.
The preparation of complex inorganic/organic core-shell particles and their in situ hydrophobization via an inverse emulsion technique is described here. Typically, aqueous solutions of precursor salts are dispersed with the help of statistical copolymers in an organic phase and subsequently polymer-stabilized nanoparticles precipitate at room temperature (e.g., barium- or strontium-based perovskite nanoparticles). By this technique, core-multiple-shell ZnO–silica–polymer nanoparticles may also be obtained, whereby the polymer matrix is protected against the photocatalytically active ZnO by the silica shell. The particles are characterized by X-ray, transmission electron microscopy, and dynamic light scattering. In this approach, amphiphilic statistical copolymers act not only as stabilizers for inverse emulsions, but they also hydrophobize the remaining complex inorganic particles shelled on the surface after the precipitation. The preparation of hybrid nanoparticles is performed by a one-pot procedure, which makes this process attractive for industrial applications.  相似文献   

19.
Macroporous gels with bicontinuous morphology in micrometer range were prepared in a titania?Csilica system containing 5 and 7.6 mass?% titania using tetraethoxysilane and four kinds of Ti precursors, two titanium alkoxides, titanium chloride and titanium sulfate, under coexistence of poly(ethylene glycol) (PEG) with an average molecular weight of 20,000. In all the systems with different Ti precursors, the addition of PEG induced phase separation, and the macroporous morphology was formed when the transitional structure of phase separation was frozen-in by sol?Cgel transition of inorganic components. However, we can see large differences in phase separation tendency and Ti dispersion in silica network depending on the Ti precursors used. When titanium alkoxides were added into pure silica sol?Cgel system, phase separation tendency largely decreased, so that low temperature reaction was necessary for macropore formation. When we used titanium salts, on the other hand, phase separation tendency does not change much from pure silica system. The difference has been tentatively attributed to the difference in the mixing level of Ti in silica network. Although titania tended to aggregate when titanium alkoxides were used as precursors, Ti could be well dispersed in silica gel matrix when acetylacetone was added in the alkoxide system or when titanium salts were used as Ti precursors.  相似文献   

20.
A novel method for synthesizing long afterglow silicate phosphor Sr3MgSi2O8:Eu^2+,Dy^3+using TEOS and inorganic powders as reactants was reported. Acetic acid as a catalyzer controlled the hydrolysis of TEOS by adjusting pH value of the system. The morphologies of precursor were characterized by transmission electron microscope (TEM). The structure and optical properties of the phosphor powders were systematically investigated by means of X-ray diffraction and spectrofluorometry. TEM images have reflected the core-shell structure and quasi-spherical morphology of the precursor particles. It was found that the single-phase Sr3MgSi2O8 crystalline structures were obtained at 1050 and 1250 ℃ for the samples prepared with the nano-coating method and the solid state reaction, respectively. The emission intensities of the phosphors prepared by the present method were higher than those by the conventional process. Also, the afterglow characteristic was better than that prepared by solid-state reaction in the comparable condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号