首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
气相二氧化硅/聚醚低聚物悬浮液体系广泛应用于涂料、胶黏剂、锂离子电池、液体防弹衣等诸多领域.然而,聚醚与白炭黑界面相互作用复杂,所形成的界面吸附层显著影响悬浮液的流变行为,界面层结构与流变行为调控是长期困扰学术界和工业界的难题.本文工作详细研究了白炭黑/线形丙二醇低聚物(PPG)界面层结构与流变行为,考察了PPG分子量(0.4~4 kg/mol)的影响机制.研究发现,PPG分子量影响其在白炭黑附近的受限状态和悬浮液流变行为.分子量为0.4 kg/mol时,PPG通过端羟基与白炭黑表面硅羟基间氢键作用而形成较厚((1.0±0.2) nm)的玻璃化层,玻璃化层几何逾渗导致悬浮液在10 rad/s下呈现溶胶-凝胶转变;分子量为1~2 kg/mol的PPG在白炭黑粒子表面形成较薄((0.8±0.1) nm)的玻璃化层,分子量为3~4 kg/mol的PPG则在白炭黑粒子表面形成受限层,悬浮液在10 rad/s下呈溶胶行为.玻璃化层几何逾渗和悬浮液溶胶-凝胶转变之间的关系说明,界面层分子受限程度和流变行为均受PPG羟基密度及其与白炭黑界面相互作用的影响.  相似文献   

2.
熔融反应加工是聚合物改性和制备聚合物纳米复合材料的重要途径之一.在此过程中,多数加成聚合物由于受到热、剪切或引发剂作用,通常可原位形成大分子自由基反应中间体.我们系统地研究了如何利用这类大分子自由基调控聚合物分子链的拓扑结构和聚合物纳米复合体系的相结构与界面.然而,某些聚合物大分子自由基,如聚丙烯(PP),受其分子链化学结构决定,在熔融反应条件下非常易于发生降解.研究发现,将可控自由基聚合中调控自由基反应活性的方法应用在熔融反应过程中可以显著抑制PP的降解,促进主反应的发生,在制备长链支化聚合物、调控聚合物纳米复合材料的相结构方面发挥了重要作用.本文介绍了本研究组近几年来通过熔体自由基反应调控PP体系的链结构和相结构的相关研究工作,如实现PP的长链支化,制备高熔体强度PP;在制备PP/C60 、PP/碳纳米管(CNTs)纳米复合材料过程中,利用熔体界面区域所发生的自由基反应,提高了纳米粒子与PP的界面相互作用,改善了纳米粒子在PP中的分散状态等.  相似文献   

3.
利用型腔体积可控注塑发泡装备制备聚丙烯/无机纳米粒子微发泡复合材料,通过复合材料的流变行为和结晶行为,分析了无机纳米粒子对聚丙烯发泡行为的影响。结果表明:无机纳米粒子有促进气泡异相成核作用,同时无机纳米粒子引入可以提高聚丙烯黏弹响应和降温结晶起始温度,起到了抑制泡孔结构恶化的作用,显著改善了聚丙烯的泡孔结构;在聚丙烯材料中添加纳米CaCO3、纳米OMMT、纳米SiO2进行发泡,以PP/OMMT发泡材料的发泡质量最理想,其泡孔密度和尺寸分别为2×106个/cm3和24.2μm。  相似文献   

4.
纳米无机粒子/聚合物复合材料界面结构的研究   总被引:1,自引:0,他引:1  
纳米粒子具有许多特性,聚合物中加入纳米粒子可以制备得到性能更加优异的复合材料,其中纳米粒子和聚合物基体间的界面对决定纳米复合材料的性能起着重要作用.本文综述了近些年来表征纳米无机颗粒/聚合物复合材料中界面结构的研究手段,如红外光谱(FTIR)、热重(TGA)、电子显微镜、小角中子散射(SANS)及小角X射线散射(SAXS)等,及界面结构与复合材料力学性能和热稳定性关系的研究进展.同时也介绍了纳米粒子对复合材料的渗透、光催化、阻燃、介电及导电性能的影响.最后对这一领域的研究进行了展望.  相似文献   

5.
聚氨酯/蒙脱土纳米复合材料的制备与性能研究   总被引:23,自引:0,他引:23  
纳米复合材料由于其纳米尺寸效应 ,表面效应以及纳米粒子与基体界面间强的相互作用 ,具有优于相同组分常规复合材料的力学 ,热学等性能 ,引起了人们的广泛关注 .用纳米材料改性聚合物 ,制备纳米复合材料是获得高性能高分子复合材料的重要方法 ,采用较多的是插层复合法 ,可分为两类 ,一是单体预先插层于层状结构填料的晶片层间 ,然后聚合 ;二是聚合物溶液或熔体直接插层于层状结构填料的晶片层间 .聚氨酯 (PU)是由多异氰酸酯与多元醇通过加聚反应而形成的高聚物 ,其重复结构单元是氨基甲酸酯链段( R2 OCONHR1NHCOO) .PU弹性体具有耐磨…  相似文献   

6.
尼龙纳米复合材料研究进展   总被引:1,自引:0,他引:1  
综述了尼龙纳米复合材料的制备方法、性能特点以及近几年来国内外对尼龙纳米复合材料产品开发进展情况。重点从纳米粒子对复合材料结晶行为的影响以及纳米粒子与尼龙界面相互作用两方面研究纳米粒子增强增韧尼龙的机理。并展望了尼龙纳米复合材料的应用前景。  相似文献   

7.
聚合物基纳米复合物(PNCs)具有比传统高分子材料更加优异的光学、力学、热力学等性能,广泛应用于各个工程领域.而纳米粒子(NPs)对材料性能提高的机理则是当前聚合物纳米复合物领域研究的重要问题,聚合物纳米复合体系相互作用的影响因素众多,至今尚未明确并完整建立复合体系相互作用与性能增强之间的关系.本文总结了近年来关于纳米粒子填充聚合物基体力学性能的研究,从粒子-聚合物相互作用和粒子-粒子相互作用角度阐述了聚合物纳米复合体系力学性能的增强机理,并根据体系中不同的结构关系分别总结了聚合物/未改性纳米粒子复合体系和聚合物/聚合物接枝纳米粒子复合体系中影响力学性能的因素.该部分内容具有重要的理论和实践意义,有助于构建复合体系微观结构与宏观性能之间的关系,进而对微观层面调控PNCs的力学性能提供指导.  相似文献   

8.
以胶体粒子为模板制备核壳纳米复合粒子*   总被引:13,自引:0,他引:13  
官建国  邓惠勇  王维  任平 《化学进展》2004,16(3):327-334
核壳纳米复合粒子具有许多不同于单组分胶体粒子的独特的光、电、磁、催化等物理与化学性质,是构筑新型功能复合材料的重要组元,在光子带隙材料、微波吸收材料、电磁流变液、催化剂和生物等领域有重要应用.本文从控制核壳复合粒子的微观结构及壳层均匀性与厚度的角度,详细评述了目前以胶体粒子为模板制备粒径从纳米到微米尺度的核壳复合粒子的方法.指出利用胶体粒子模板表面与壳层物质或其前驱物间的特殊相互作用(包括静电和化学相互作用),是完善现有制备方法和发展新方法来制备具有设定组成、结构和性能的核壳复合粒子的关键,同时也是将来的粒子表面纳米工程和获取有序的、先进纳米复合材料的主要方向。  相似文献   

9.
聚合物基粘土纳米复合材料的流变行为研究   总被引:7,自引:0,他引:7  
聚合物基粘土纳米复合材料具有与常规颗粒填充体系类似的流变特性 :在整个频率范围内 ,储能模量和损耗模量均随粘土含量的增加而变高 ,其频率依赖性会表现出非未端行为 :且当粘土含量超过临界值以后 ,储能模量会在低频区表现出似固体的平台发展。但与之不同的是前者在低粘土含量的条件下 (<10 % (wt) )就会表现出似固体行为或非末端行为。这些流变特性还会受到粘土的径厚比、化学特性、聚合物基体的分子结构参数和粘土与基体间的相互作用强度等因素的影响。聚合物基粘土纳米复合材料的流变行为是与其微观结构的形成和演化以及聚合物分子链在特定环境下的粘弹松弛过程紧密联系在一起的。本文综述了插层型、剥离型和聚合物分子链一端受限剥离型聚合物基粘土纳米复合材料在力场作用下的流变特性和粘弹松弛机理方面的研究进展。  相似文献   

10.
结合耗散粒子动力学模拟和时域有限差分方法,研究了A(BC)_n多嵌段共聚物和纳米粒子共混体系的自组装行为及其光学性能,分析了纳米粒子体积分数和嵌段间相互作用强度对自组装形貌及其光学性能的影响。结果表明,A(BC)_n多嵌段共聚物/纳米粒子共混体系可形成有机/无机杂化的多级结构,改变纳米粒子的体积分数和嵌段间相互作用强度可以调控纳米粒子的分布及其相应的多级结构。不同尺度的结构对不同频率光的反射作用有明显区别,而纳米粒子的加入显著增大了反射峰的强度和宽度。改变纳米粒子的分布可调控反射峰的强度和宽度。  相似文献   

11.
Influence of molecular weight of polymer matrix on nanocomposites rheology is not yet well understood. Herein dynamic rheological responses of fumed silica (FS)/polyethylene oxide (PEO) nanocomposites are investigated as a function of viscosity‐averaged molecular weight (Mη) of PEO, volume fraction (?) and surface characteristics (hydrophilic or hydrophobic) of FS. In the nanocomposites, FS does not influence the glass transition and crystallinity of PEO in the mobile PEO phase while the interfacial interactions tend to immobilize a small fraction of PEO chains that could not undergo glass transition. In spite of the common observation that the reinforcement decreases with increasing Mη of PEO and improving hydrophobicity of FS, linear rheological responses are well reproduced by the two‐phase model, revealing the crucial contribution of the non‐Newtonian matrix undergoing microscopic strain amplified by the filler. Furthermore, nonlinear rheological responses of the nanocomposites are collapsed into master curves plotted against local strain of the matrix. Analyzing the nonlinear rheology by Fourier transform and stress waveform methods reveal the dominating contribution of the matrix and the role of strain amplification played by the filler. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 397–405  相似文献   

12.
The interparticle interactions in concentrated suspensions are described. Four main types of interactions can be distinguished: (i) "Hard-sphere" interactions whereby repulsive and attractive forces are screened. (ii) "Soft" or electrostatic interactions determined by double layer repulsion. (iii) Steric repulsion produced by interaction between adsorbed or grafted surfactant and polymer layers. (iv)and van der Waals attraction mainly due to London dispersion forces. Combination of these interaction energies results in three main energy-distance curves: (i) A DLVO type energy-distance curves produced by combination of double layer repulsion and van der Waals attraction. For a stable suspension the energy-distance curve shows a "barrier" (energy maximum) whose height must exceed 25kT (where k is the Boltzmann constant and T is the absolute temperature). (ii) An energy-distance curve characterized by a shallow attractive minimum at twice the adsorbed layer thickness 2δ and when the interparticle-distance h becomes smaller than 2δ the energy shows a sharp increase with further decrease of h and this is the origin of steric stabilization. (iii) an energy-distance curve characterized by a shallow attractive minimum, an energy maximum of the DLVO type and a sharp increase in energy with further decrease of h due to steric repulsion. This is referred to as electrosteric repulsion. The flocculation of electrostatically and sterically stabilized suspensions is briefly described. A section is devoted to charge neutralization by polyelectrolytes and bridging flocculation by polymers. A distinction could be made between "dilute", "concentrated" and "solid suspensions" in terms of the balance between the Brownian motion and interparticle interaction. The states of suspension on standing are described in terms of interaction forces and the effect of gravity. The bulk properties (rheology) of concentrated suspensions are described starting with the case of very dilute suspensions (the Einstein limit with volume fraction Φ≤0.01), moderately concentrated suspensions (0.2>Φ≥0.1) taking into account the hydrodynamic interaction and concentrated suspensions (Φ>0.2) where semi-empirical theories are available. The rheological behavior of the above four main types of interactions is described starting with "hard-sphere" systems where the relative viscosity-volume fraction relationship could be described. The rheology of electrostatically stabilized suspensions was described with particular reference to the effect of electrolyte that controls the double layer extension. The rheology of sterically stabilized systems is described using model polystyrene suspensions with grafter poly(ethylene oxide) layers. Finally the rheology of flocculated suspensions was described and a distinction could be made between weakly and strongly flocculated systems.  相似文献   

13.
随着界面流变测量技术以及相关的光学辅助仪器的发展,近10年来界面流变学在食品、化妆品、医药等领域发挥了重要作用。本文介绍了近年来蛋白质膜界面流变行为的研究进展,着重介绍了蛋白质界面流变学在泡沫和乳液方面的研究。本文主要分为3个部分,内容包括:蛋白质膜界面流变学行为与泡沫、乳液稳定性的相互关系,蛋白质-多聚糖的界面流变行为研究,蛋白质-表面活性物质的界面流变行为研究。界面流变学在泡沫和乳液方面取得的较快研究进展不仅促进了人们对蛋白质膜界面流变行为更为深刻的理解,而且为更好地开发和应用蛋白质及其混合物作为表面活性物质和胶体稳定剂而提供重要的理论依据和指导。  相似文献   

14.
徐贝  宋义虎  郑强 《高分子学报》2017,(11):1832-1840
采用亲水气相二氧化硅(FS)、非缠结聚乙二醇(PEG,重均分子量400)制备悬浮体系,考察FS体积分数(φ)对PEG本体相α-松弛、结晶行为及悬浮体系流变行为的影响.结果表明,FS可延缓PEG本体相α-松弛,提高玻璃化转变温度,并显著增加浮体系黏度,降低本体PEG相结晶与熔融焓.低填充时,FS起成核作用;高填充时,FS延迟PEG分子扩散,并降低结晶温度.FS对PEG结晶的不同作用发生在悬浮体系溶胶-凝胶转变附近,此时悬浮液非线性动态流变行为呈现显著的硬化软化特性,线性动态流变行为呈现最为显著的频率依赖性.通过建立线性动态流变行为叠加曲线,揭示了FS对PEG分子链扩散行为的显著推迟作用.  相似文献   

15.
Thermal investigations on two selected model-nanocomposites have been made. They differ with regard to the type of the anorganic nanoparticles that have been filled into an organic oligomer matrix. The properties of nanocomposites may vary between those of a simple mixture of independent components and those of a system, where specific interfacial interactions between the constituting parts lead to ‘new’ properties. Depending on the type of the nanoparticles filled into the matrix, the resulting properties might be closer to one or to the other extreme. We used temperature modulated differential scanning calorimetry (TMDSC) to investigate a matrix of the oligomer diglycidyl ether of bisphenol A (DGEBA) filled either with SiO2- or Al2O3-nanoparticles. The dependence of the complex specific heat capacity () on the concentration of nanoparticles shows a clear difference between the two systems as far as the glass transition of the oligomer is concerned. The SiO2 composite seems to behave more like a simple mixture, whereas the Al2O3 composite shows ‘new’ properties.  相似文献   

16.
The interfacial rheological properties of stable and weakly aggregated two-dimensional suspensions are studied experimentally using a magnetic rod interfacial rheometer. Particle monolayers with well controlled structures were prepared. Charged polystyrene particles create two-dimensional colloidal crystals at the water-decane interface over a wide range of concentrations. Under similar conditions a predominantly liquid structure is obtained at the water-air interface for the same particles. The addition of appropriate combinations of the anionic surfactant sodiumdodecylsulfate (SDS) and sodium chloride (NaCl) to the aqueous subphase leads to a destabilization of these monolayers with the formation of fractal aggregates at low concentrations and a heterogeneous gel forming as the surface coverage is increased. After the structures have been built up a reproducible structure can be obtained, of which the interfacial rheological properties can be investigated using a magnetic rod stress rheometer. In all cases, numerical calculations were used to assess the importance of instrumental artifacts and the effect of the coupling between surface and subphase flows. The rheology of aggregated suspensions was compared to the reference case of a colloidal crystal. The two-dimensional aggregated suspensions display rheological features which are similar to their three-dimensional counterparts. These include an elastic response with small linearity limits, a power law dependence on surface coverage and a dependence on the strength of attraction. The results shed some light on the possible role of interfacial rheology on the stability of particle laden high interface systems. Additionally, the 2D suspensions could present fundamental insights in the rheological properties of dense colloidal suspensions.  相似文献   

17.
Control over selective recognition of biomolecules on inorganic nanoparticles is a major challenge for the synthesis of new catalysts, functional carriers for therapeutics, and assembly of renewable biobased materials. We found low sequence similarity among sequences of peptides strongly attracted to amorphous silica nanoparticles of various size (15-450 nm) using combinatorial phage display methods. Characterization of the surface by acid base titrations and zeta potential measurements revealed that the acidity of the silica particles increased with larger particle size, corresponding to between 5% and 20% ionization of silanol groups at pH 7. The wide range of surface ionization results in the attraction of increasingly basic peptides to increasingly acidic nanoparticles, along with major changes in the aqueous interfacial layer as seen in molecular dynamics simulation. We identified the mechanism of peptide adsorption using binding assays, zeta potential measurements, IR spectra, and molecular simulations of the purified peptides (without phage) in contact with uniformly sized silica particles. Positively charged peptides are strongly attracted to anionic silica surfaces by ion pairing of protonated N-termini, Lys side chains, and Arg side chains with negatively charged siloxide groups. Further, attraction of the peptides to the surface involves hydrogen bonds between polar groups in the peptide with silanol and siloxide groups on the silica surface, as well as ion-dipole, dipole-dipole, and van-der-Waals interactions. Electrostatic attraction between peptides and particle surfaces is supported by neutralization of zeta potentials, an inverse correlation between the required peptide concentration for measurable adsorption and the peptide pI, and proximity of cationic groups to the surface in the computation. The importance of hydrogen bonds and polar interactions is supported by adsorption of noncationic peptides containing Ser, His, and Asp residues, including the formation of multilayers. We also demonstrate tuning of interfacial interactions using mutant peptides with an excellent correlation between adsorption measurements, zeta potentials, computed adsorption energies, and the proposed binding mechanism. Follow-on questions about the relation between peptide adsorption on silica nanoparticles and mineralization of silica from peptide-stabilized precursors are raised.  相似文献   

18.
The Van Oss surface thermodynamic theory of polar and apolar interfacial interactions was extended to the interaction between mineral surfaces and bubbles across liquid media. The acid base (polar) interfacial interactions are supposed to be responsible for the hydration repulsion between a hydrophilic mineral and a bubble as well as for the hydrophobic attraction between a hydrophobic mineral and the bubble.  相似文献   

19.
A variety of fluoroalkyl end‐capped oligomers/silver nanocomposites were prepared by the reactions of silver ions with poly(methylhydrosiloxane) in the presence of fluoroalkyl end‐capped N,N‐dimethylacrylamide oligomer, N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide oligomer, N,N‐dimethylacrylamide cooligomer containing poly(dimethylsiloxane) segments in organic media such as toluene and 1,2‐ dichloroethane. These fluorinated oligomers/silver nanocomposites thus obtained were found to exhibit clear plasmon absorption bands around 420 nm related to the formation of silver nanoparticles. In particular, these composites could display narrow plasmon absorptions around 420 nm in toluene by the addition of trioctylamine (TOA). On the other hand, the corresponding non‐fluorinated N‐(1,1‐ dimethyl‐3‐oxobutyl)acrylamide oligomer was not able to afford such a plasmon absorption under similar conditions. These fluorinated oligomers/silver nanocomposites in organic media have been found to be stable for more than 10 days. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements showed that silver nanoparticles could be effectively encapsulated into fluorinated oligomeric aggregate cores to afford colloidal stable fluorinated oligomers/silver nanocomposites. Fluorinated oligomers/silver nanocomposites were also applied to the surface modification of traditional organic polymers such as polystyrene (PSt) and poly(methyl methacrylate) (PMMA) to exhibit not only a good oleophobicity imparted by fluorine but also a higher surface antibacterial activity related to the silver nanoparticles on their surface. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
In this work, we have studied the interfacial properties of cationic polyelectrolyte (PE) and silica nanoparticle (NP) systems at macroscopic silica surfaces by means of ellipsometry. The influence of adsorbed layers on the interactions between silica surfaces was also investigated using the bimorph surface force apparatus. Added nanoparticles were observed to strongly swell the interfacial polyelectrolyte layers, an effect partly related to neutralization of charged polyelectrolyte groups. The effect was more pronounced for low charged than for highly charged polyelectrolytes. Overall, the presence of nanoparticles seemed to increase the repulsive interaction measured between silica surfaces. The force measured on approach was long range and quite strongly repulsive. On separation, an attractive bridging interaction was measured for polyelectrolyte-covered surfaces. For the low charged polyelectrolyte used in the study, the force turned repulsive on addition of nanoparticles. For the highly charged polyelectrolyte used, a change from a very strong attraction (involving a jump of the surfaces out of contact) to a very long-range elastic attractive force was observed on adding nanoparticles. The long-range elastic force indicates that polymer chains and nanoparticles form a transient network in the gap between the surfaces. The observed difference in the outward force curves may explain why the addition of nanoparticles appears to improve, e.g., shear-resistance and reflocculation characteristics of polymeric flocculants. Copyright 2000 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号