首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
填充聚合物的熔体流变学   总被引:20,自引:0,他引:20  
颗粒填充聚合物(包括聚合物纳米复合材料)溶体通常表现出模量升高、频率依赖性的改变以及高含量填充体系的屈服行为等与单纯聚合物明显不同的流变行为,并且这些流变特性还会受到填料含量、形状尺寸以及颗粒-聚合物之间相互作用等诸多因素的影响。填充聚合物的宏观流变行为是与其微观结构的形成和演化以及高分子链在特定条件下的阻尼松弛过程密切联系在一起的。本文综述了颗粒填充聚合物(包括聚合物纳米复合材料)在力场作用下的流变性以及各种因素对其流变行为的影响,尤其是着重阐述了聚合物纳米复合材料的流变松弛机理和基于热力学理论建立起来的、描述填充体系熔体流变行为的Leonov模型。  相似文献   

2.
以LDPE/EVA/纳米粘土复合体系为研究模型,考察了剪切作用下,分散良好的纳米粘土对聚合物基体熔体稳态及瞬态粘弹响应的影响.发现剪切作用下,纳米粘土增加了聚合物熔体粘弹特性对剪切速率、剪切应变及剪切作用史的依赖性,改变了相应的依赖关系.稳态剪切时,纳米粘土的加入使体系第一法向应力差(N1)在低剪切速率区变为负值,而在高剪切速率区N1与粘土的含量无关;同时就瞬态剪切应力及N1的应变依赖关系而言,复合体系明显不同于聚合物基体;预剪切对聚合物基体瞬态粘弹响应几乎没有影响,而当纳米粘土的加入量大于3wt%后,与未经预剪切的样品相比较,经预剪切的复合体系的瞬态剪切应力值、应力过冲程度以及稳态剪切应力值均明显下降,且预剪切前后复合体系达到稳态时其瞬态剪切应力差值随纳米粘土含量的增高而线性增加.此外,纳米粘土的添加对聚合物熔体受剪切作用的非线性粘弹响应存在影响.复合体系熔体呈现特异非线性粘弹响应,其缘由被认为是由于纳米粘土在聚合物基体中剥离分散,或聚合物分子链插层于粘土片层间,形成局部有序结构,受剪切作用而排列取向.  相似文献   

3.
吴刚  郑强 《高分子学报》2007,(6):573-576
由于小应变条件下,动态流变行为的测定不会对材料本身的结构造成影响或破坏,动态流变研究被认为是表征填充类聚合物体系填料颗粒的分散状态的有效方法[1~3].众所周知,窄分子量分布的均相聚合物体系在低频率(ω)区域的粘弹行为满足线性粘弹关系,而填充类聚合物基复合材料的流变行为表现出特殊的粘弹特征[4~8],即在低ω区域显示出非线性粘弹行为的特殊响应.特别是所谓的"第二平台(second plateau)"现象,被认为与体系形态结构密切相关[9].  相似文献   

4.
聚丙烯/多壁碳纳米管复合材料的热性能和流变性能   总被引:5,自引:0,他引:5  
用熔融共混法制备了聚丙烯多壁碳纳米管(PP MWNTs)复合材料,TGA研究表明在氮气气氛下碳纳米管显著增加了聚丙烯基体的热稳定性.3wt%MWNTs可使PP热分解起始温度提高44℃.非等温结晶研究表明MWNTs对PP基体的结晶行为没有明显的影响.流变测试结果表明PP MWNTs复合材料的储能模量G′和损耗模量G″随着MWNTs含量增加逐渐增大.1wt%MWNTs的PP聚合物的零剪切粘度最低,5wt%MWNTs的PP聚合物的零剪切粘度最高,PP和3wt%MWNTs的PP纳米聚合物的零剪切粘度居于二者之间,随着频率的增加,剪切稀化作用越来越明显,呈现出假塑性流体行为.含5wt%MWNTs的PP复合材料的体积和表面电阻率与纯PP相比分别下降了9个和4个数量级,表明少量的MWNTs可以显著改变PP的电学性能.  相似文献   

5.
多组分聚合物体系的动态流变行为与其相行为的关系   总被引:3,自引:1,他引:2  
对多组分聚合物体系相行为所采用的常规研究方法都存在不可避免的缺陷。而用动态流变学方法研究具有独特的优点,其理论依据是:对具有临界相行为(LCST、UCST)或微相分离行为的多组分聚合物体系,在小应变状态下的动态流变行为对体系在相分离过程中形态和结构的形成与演化极其敏感,非均相结构的产生使体系在长时松弛区域表现出与均相聚合物体系不同的粘弹松弛行为,即弹性显著增加、松弛时问明显增长以及时-温叠加原理失效,偏离经典的线性粘弹理论模型。本文综述了用Han曲线、Cole-Cole曲线、时-温叠加失效和G′-T曲线等动态流变学方法对多组分聚合物体系相行为的研究进展。  相似文献   

6.
几种高性能热塑性树脂与蒙脱土插层复合的研究   总被引:6,自引:0,他引:6  
研究了PEK C ,PES ,PEI和PSU 4种刚性分子链高性能热塑性树脂与蒙脱土插层复合的行为 ,结果表明通过溶液混合PEK C和PES很容易插入到粘土层间并使粘土剥离 ,得到剥离型纳米复合材料 ,而PEI和PSU不能插入到粘土层间 ,分析认为插层能力的差异是由于它们与粘土间的作用力不同导致的 .PEK C和PES与粘土形成纳米复合材料后 ,玻璃化温度大幅度下降 ,但热分解温度有很大提高 ,认为是由于体积很大而且刚硬的聚合物分子与粘土片层混合后形成了较大的自由体积 ,使玻璃化温度下降 ,但聚合物端基与粘土间很强的作用力使它的热解温度提高 .PEI和PSU与粘土复合后热性能没有明显变化 ,说明如果粘土与聚合物间不能形成纳米复合 ,不会对聚合物性能产生显著影响  相似文献   

7.
通过双螺杆挤出共混制备了等规聚丁烯-1(iPB-1)/硬脂酸改性CaCO3纳米粒子复合材料,以扫描电子显微镜(SEM)、差示扫描量热法(DSC)、动态流变及拉伸、冲击和弯曲等手段对其结构和性能进行表征,考察了不同含量CaCO3纳米粒子在加入2种不同相对分子质量iPB-1时的影响规律.结果显示CaCO3纳米粒子在较低相对分子质量iPB-1中分散较好,所得复合材料的动态流变复数模量、储能模量、损耗模量及复数黏度等动态流变性能以及拉伸强度等力学性能均随CaCO3纳米粒子用量增多而明显增加;而CaCO3纳米粒子在较高相对分子质量iPB-1中分散较差,所得复合材料的动态流变性能和力学性能变化较小甚至没有影响.iPB-1短链因端链作用相对长链在链构象调整时更容易而链活动性更强且缠结弱,对CaCO3纳米粒子填充更敏感;iPB-1长链则主要受链缠结主导限制了其链构象调整能力进而链活动性较低,表现为更“强”的“强流体”特性,进而降低了CaCO3纳米粒子...  相似文献   

8.
聚合物接枝纳米颗粒(Polymer grafted nanoparticles,PGNPs)是一类重要的聚合物改性填料。由于表面聚合物链的存在,在一定条件下,PGNPs可以均匀地分散在聚合物基体中,形成"完全相容性"聚合物纳米复合材料。近年来,PGNPs填充聚合物体系的结构-性能关系研究已成为高分子学科的研究热点。本文主要概述了PGNPs的制备及其填充聚合物体系的结构-性能关系。从PGNPs的设计制备、PGNPs在聚合物基体中的分散行为、PGNPs纳米复合体系流变行为和纳米复合材料力学性能4个方面介绍了该领域已经取得的研究进展和现状,并展望该领域今后的发展前景和研究方向。  相似文献   

9.
HDPE氧化交联与动态流变行为   总被引:5,自引:0,他引:5  
研究了高密度聚乙烯(HDPE)熔体在200℃的动态流变行为,比较了空气、氮气及加入抗氧剂B215情况下体系动态粘弹行为的差异.研究表明,在空气环境中,HDPE在低频区域出现特征粘弹行为.随着测试前热处理时间的延长,动态储能模量(G')明显增加,在低频率(ω)区域lgG'~lgω关系呈现平台特征.同时损耗角tanδ变小并出现极大值.在氮气环境中,上述特征粘弹行为存在但不明显.在加入抗氧剂的条件下,特征粘弹行为完全消失.这些现象归因于高温下HDPE的氧化导致其发生交联.  相似文献   

10.
抗冲聚丙烯共聚物熔体结构演化的动态流变学表征   总被引:1,自引:0,他引:1  
用动态流变学方法研究了抗冲聚丙烯共聚物(IPC)熔体的流变行为.通过探讨温度、抗氧剂、氧气的存在对其熔体动态粘弹响应的影响,对IPC熔体结构的演化过程进行了描述.随温度的升高,IPC熔体的动态粘弹响应明显改变,低频率(ω)区域动态储能模量(G′)与ω的对数关系lgG′-lgω呈现平台特征;加入复合抗氧剂B215或在N2气氛下,在一定的时间范围内,IPC的特征粘弹行为完全消失,呈现均相体系的流变响应特征.低ω区域粘弹函数对IPC的结构变化存在敏感响应.通过改变温度、添加抗氧剂以及N2保护,获得了IPC熔体因降解与交联反应所引起的结构改变的信息.  相似文献   

11.
In this study, polymer nanocomposites based on poly(lactic acid) (PLA) and organically modified layered silicates (organoclay) were prepared by melt mixing in an internal mixer. The exfoliation of organoclay could be attributed to the interaction between the organoclay and PLA molecules and shearing force during mixing. The exfoliated organoclay layers acted as nucleating agents at low content and as the organoclay content increased they became physical hindrance to the chain mobility of PLA. The thermal dynamic mechanical moduli of nanocomposites were also improved by the exfoliation of organoclay; however, the improvement was reduced at high organoclay content. The dynamic rheological studies show that the nanocomposites have higher viscosity and more pronounced elastic properties than pure PLA. Both storage and loss moduli increased with silicate loading at all frequencies and showed nonterminal behavior at low frequencies. The nanocomposites and PLA were then foamed by using the mixture of CO2 and N2 as blowing agent in a batch foaming process. Compared with PLA foam, the nanocomposite foams exhibited reduced cell size and increased cell density at very low organoclay content. With the increase of organoclay content, the cell size was decreased and both cell density and foam density were increased. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 689–698, 2005  相似文献   

12.
Thermoplastic polyurethane (TPU) is a versatile polymer exhibiting many engineering applications. In this article, two varieties of clay (Cloisite and Laponite RD) have been used to prepare TPU‐based nanocomposites. They differ in, chemical composition, hydrophobicity, aggregation tendency, and dispersibility in a particular solvent. A detailed investigation of the thermal, morphological, and rheological behavior reflects the affinity of Cloisite towards the soft segment, whereas it is the hard segment for modified Laponite. The maximum improvement in onset degradation temperature has been observed to be 17.5 and 8.3 °C for Cloisite and Laponite, respectively. Five percent Cloisite‐filled sample shows optimum storage modulus in the glassy region where as it is the 10% filled sample at the rubbery region. However, the trend remains indifferent both in rubbery and glassy regions for Laponite, and properties have been found optimum for 3% filled sample. To explore the behavior in the terminal and flow regions, dynamic rheological experiments were performed in low shear rate. Variation in dynamic rheological properties can be explained well on the basis of the combination of partly exfoliated, intercalated, and aggregated structures of the nano clay inside the TPU matrix, depending on their nature and preferential association with different segments. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2341–2354, 2008  相似文献   

13.
For high performance waterborne coatings usually polymer latexes with low emulsifier content are more preferred. Although polymer/clay nanocomposites offer improved properties, it is difficult to produce clay based nanocomposite latexes containing low emulsifier due to the stabilization problems especially caused by organoclays. Present study deals with the preparation of a tBA/BA/MAA ternary copolymer/clay nanocomposite containing 3 wt.% sodium montmorillonite (Na+-MMT) via seeded emulsion polymerization. Experimentally it was observed that even the usage of hydrophilic clay caused stabilization problem and a certain amount of emulsifier (>1 wt.%) was necessary to obtain stable latexes. In addition, the usage of a low molecular weight water soluble polymer as steric barrier was found to increase the stability of system. Obtained nanocomposite latex showed fine particle size diameter (127 nm) and very narrow size distribution (PDI = 0.06). The WAXD and TEM investigations indicated that a mostly exfoliated nanocomposite was obtained. Thermal analyses (DSC, DMTA and TGA) showed that there was no change at Tg of the copolymer while very high improvement was obtained for elastic modulus and a slight increase in thermal stability. According to the rheological measurements, the nanocomposite latex showed a higher low shear viscosity, a stronger shear thinning behavior and an improved physical stability in comparison to the reference latex.  相似文献   

14.
We investigate the nanostructure and the linear rheological properties of polybutylacrylate (PBA) filled with St?ber silica particles grafted with PBA chains. The silica volume fractions range from 1.8 to 4.7%. The nanostructure of these suspensions is investigated by small-angle neutron scattering (SANS), and we determine their spectromechanical behavior in the linear region. SANS measurements performed on low volume fraction composites show that the grafted silica particles are spherical, slightly polydisperse, and do not form aggregates during the synthesis process. These composites thus constitute model filled polymers. The rheological results show that introducing grafted silica particles in a polymer matrix results in the appearance of a secondary process at low frequency: for the lowest volume fractions, we observe a secondary relaxation that we attribute to the diffusion of the particles in the polymeric matrix. By increasing the silica volume fraction up to a critical value, we obtain gellike behavior at low frequency as well as the appearance of a structure factor on the scattering intensity curves obtained by SANS. Further increasing the silica particle concentration leads to composites exhibiting solidlike low-frequency behavior and to an enhanced structure peak on the SANS diagrams. This quantitative correlation between the progressive appearance of a solidlike rheological behavior, on one hand, and a structure factor, on the other hand, supports the idea that the viscoelastic behavior of filled polymers is governed by the spatial organization of the fillers in the matrix.  相似文献   

15.
In contrast to usually increased viscosity of filled polymer melts with increasing filler content, some filled polymer melts showed decreased melt viscosity in the presence of thermotropic (main chain) liquid crystalline polymer (LCP) with increasing filler content. This phenomenon was termed as rheological hybrid effect and found correlated well with the fibrillation of LCP melt droplets. Investigation of this LCP fibrillation in matrix polymers, with fillers of various shapes at micro- and nano-meter scales, showed that LCP fibrillation was promoted by the filler addition, depending upon thermodynamic and hydrodynamic driving forces involved.  相似文献   

16.
A series of intercalated poly(trimethylene terephthalate) (PTT)/clay nanocomposites were prepared in a twin‐screw extruder by the melt mixing of PTT with either quaternary or ternary ammonium salt‐modified clays. The morphology and structure, along with the crystallization and melting behavior, and the dynamic mechanical behavior of the composites were characterized by X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, and dynamic mechanical thermal analysis. The results showed that the PTT chains could undergo center‐mass transport from the polymer melt into the silicate galleries successfully during the blending and extrusion process. More coherent stacking of the silicate layers was reserved at higher clay concentrations and shorter blend times. Compared with conventionally compounded composites, the nanoscale‐dispersed organophilic clays were more effective as crystal nucleation agents. The influence of the nanosilicates on the crystallization and melting behavior of PTT became distinct when the concentration of clay was around 3 wt %. The changes in the crystallization behavior of the polymer/clay nanocomposites depended not only on the size of the silicates but also on the intrinsic crystallization characteristics of the polymers. The resulting nanocomposites showed an increase in the dynamic modulus of PTT and a decrease in the relaxation intensity (both in loss modulus and loss tangent magnitude). © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2275–2289, 2003  相似文献   

17.
In this work, a great synergistic effect of 2D clay platelets and 1D carbon nanotubes (CNTs) on reinforcing chitosan matrix has been observed for the first time. With incorporation of 3 wt % clay and 0.4 wt % CNTs, the tensile strength and Young's modulus of the nanocomposites are significantly improved by about 171 and 124%, respectively, compared with neat chitosan. This could be understood as due to the formation of much jammed fillers network with 1D CNTs and 2D clay platelets combined together, as indicated by rheological measurement. Our work demonstrates a good example for the preparation of high performance polymer nanocomposites by using nanofillers of different dimension together.  相似文献   

18.
Summary: Recycled PET as well as ABS - organomodified montmorillonite nanocomposites were prepared via melt compounding in a counter-rotating twin screw extruder. The topological changes in polymer matrices as dependency on clay modification have been evaluated from dynamic experiments in the shear flow using low amplitude oscillatory measurements. Flow characteristics of all studied organoclay nanocomposites showed shear-thinning behavior at low frequencies. Filling of PET with some organoclays led to degradation reactions, which were reflected by lower magnitudes of viscosity and storage modulus in the range of higher frequencies as compared to unfilled polymer matrix. On the contrary, no degradation during the processing of different organoclays with recycled ABS has been observed.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号