首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用凝胶-燃烧法制备了稀土Eu3+掺杂的LaMgAl11O19红色荧光粉的前驱粉末, 在低于700℃退火处理时, 得到非晶态样品, 而高于850℃退火处理后为单一六方相结构LaMgAl11O19:Eu3+样品. SEM结果表明, 该法制备的样品为颗粒分布均匀, 粒径在200~400 nm之间的超细粉末. 通过激发光谱和发射光谱研究了Eu3+在LaMgAl11O19基质中的发光性能, 结果显示, 非晶态和晶态La1-xMgAl11O19:x Eu3+样品都可发光, 在613 nm波长光的监测下所得荧光粉的激发光谱为一宽带和系列锐峰, 其最强激发峰出现在蓝光465 nm处, 次强峰为394 nm, 表明该荧光粉与广泛使用的紫外和蓝光LED芯片的输出波长相匹配. 在465 nm波长光的激发下观察到超细LaMgAl11O19粉末中Eu3+的613 nm (5D07F2)强的特征发射, 且随着粉末逐渐成相5D07F2跃迁明显增强, 说明LaMgAl11O19:Eu3+超细粉末可作为白光LED的红色补偿荧光粉.  相似文献   

2.
采用高温固相法制备了新型KCaY1-x(Mo04)3:Eux红色荧光粉.利用X射线衍射(XRD)、扫描电镜(SEM)和荧光光谱技术对粉体进行了结构、表面形貌和发光性能表征.结果表明:该系列荧光粉均为四方晶系的白钨矿结构,能够被近紫外光(394 nm)和蓝光(465 nm)有效激发,产生Eu3的5 D0→7 F2特征跃迁红光发射(613 nm).对这种荧光粉作后处理,可改善其表面形貌,并提高其发光强度.该系列荧光粉在394,465 nm的吸收与目前广泛应用的近紫外和蓝光LED芯片的输出波长相匹配.因此这种荧光粉是一种可能应用在白光LED上的红色荧光粉材料.  相似文献   

3.
采用高温固相法合成R2-x(MoO4)3∶xEu3+(R=Y,Gd)系列红色荧光粉.研究了煅烧温度、助熔剂的含量和Eu3+的掺杂量对样品发光性能的影响,并对样品的物相组成、激发和发射光谱进行分析.结果表明,样品Gd0.6(MoO4)3∶1.4Eu3+在800℃左右煅烧时呈单斜晶结构,当煅烧温度提高到950℃左右,呈正交斜晶结构;样品Y0.2(MoO4)3∶1.8Eu3+在800℃左右煅烧时已经完全形成了正交结构,当煅烧温度升高到1000℃左右时,其正交结构得到保持,没有发生相变.其中,助熔剂NH4Cl的含量占样品总量的3%,煅烧温度为1000℃,保温3h得到的样品Gd0.6(MoO4)3∶1.4Eu3+和Y0.2(MoO4)3∶1.8Eu3+的发光性能达到最佳.另外,由激发和发射光谱分析表明,该荧光粉可以被近紫外光(395nm)和蓝光(465nm)有效激发,发射峰值位于612nm的红光,对应于Eu3+离子的5 D0→7 F2跃迁,是一种可应用在紫外光和蓝光芯片激发产生白光LED的红色荧光粉.  相似文献   

4.
使用NH4HCO3-NH3.H2O混合沉淀剂,采用化学共沉淀法合成(Ca1-x-yLuy)MoO4:xEu3+红色荧光粉,通过XRD、EDS、荧光光谱和CIE色度图研究该荧光粉的晶体结构、成分组成及发光性能。结果表明,实验按照理论化学计量比成功合成了(Ca1-x-yLuy)MoO4:xEu3+红色荧光粉,该荧光粉为CaMoO4白钨矿结构;(Ca1-x-yLuy)MoO4:xEu3+具有7F0→5L6(394 nm)和7F0→5D2(465 nm)的强电子吸收,且在613 nm处可发射高强度红光,其色坐标为(0.666 5,0.332 9),明显优于传统的Y2O2S:Eu3+红色荧光粉;此外,当Lu含量为30mol%时,荧光粉发光强度最佳。  相似文献   

5.
0引言在等离子体平板显示(PDP)材料中,常用红粉(Y,Gd)BO3∶Eu3 和蓝粉BaMgAl10O17∶Eu2 都存在各自的不足之处,如红粉的色纯度较差,蓝粉热稳定性不够等,使其应用受到很大限制[1]。为了寻找新的有效发光材料,故选择了畸变磁铅矿结构的LaMgAl11O19。LaMgAl11O19系六方晶系的畸变磁铅矿结构,由镜面层和尖晶石层两部分组成。LaMgAl11O19具有其独特的优点,(1)Eu3 、Tb3 和Eu2 均可取代镜面上La离子位置,分别形成红色、绿色和蓝色发光;(2)Mn将取代Al-O四面体中心位置的Mg,形成520nm左右的绿色发光;同时研究稀土掺杂的LaMgAl11O19的…  相似文献   

6.
采用高温固相法合成了Ba(Y1-0.5x-yAly)2S4:xHo3+系列荧光粉。在465 nm蓝光激发下,荧光粉的发射光谱呈多谱带发射,主峰位于492、543和661 nm处,分别对应于Ho3+的5F3→5I8,(5S2,5F4)→5I8和5F5→5I8跃迁发射。研究了Ho3+和Al3+掺杂量对BaY2S4:Ho3+发光性能的影响。结果表明,随着Ho3+掺杂量的逐渐增大,荧光粉的发光颜色由绿色逐渐向红色转变;适量Al3+取代Y3+可以提高BaY2S4:Ho3+荧光粉的发光强度。荧光粉Ba(Y0.665Al0.3)2S4:0.07Ho3+在蓝光(465 nm)激发下发射黄光,是一种潜在的白光LED用黄色荧光粉。  相似文献   

7.
钨钼酸盐荧光粉基质组成及其退火过程对荧光性能的影响   总被引:1,自引:0,他引:1  
采用高温固相法合成了一系列Eu3+掺杂的钨钼酸盐红色荧光粉CaxSr0.88-x(WO4)y(MoO4)1-y:0.08Eu3+。对其晶体结构和荧光性能进行了X射线衍射(XRD)、荧光光谱(PL)的表征,研究了不同Sr/Ca和WO4/MoO4比例对荧光粉光谱性能的影响,初步研究了不同退火过程对其发光性能的影响。所合成的Ca0.70Sr0.18(MoO4)0.5(WO4)0.5:0.08Eu3+荧光粉发光强度较好,可以被近紫外光(395 nm)和蓝光(465nm)有效激发,发射峰位于616 nm(Eu3+的5 D0→7 F2跃迁)。  相似文献   

8.
使用溶胶-凝胶法制备了Cd3Al2Si3O12:Eu3+非晶体系红色荧光粉,并对其发光性质进行了研究.该荧光粉在Eu3+的位于394 nm的5L6能级和464 nm的5D2能级的激发下能够产生强的5D0→7F的红光特征发光,最佳掺杂摩尔分数为25%.Cd3Al2Si3O12:Eu3+荧光粉与传统的Y2O3:Eu3+相比较,其发光强度是Y2O3:Eu3+的2.4倍左右(在394和464 nm的激发下).Cd3Al2Si3O12:Eu3+的热稳定性好,比已经商业化的YAG:Ce3+的热猝灭影响要小得多.所有这些结果表明Cd3A12Si3O12:Eu3+可作为暖白光LED用红色荧光粉.  相似文献   

9.
采用预先球磨、再二次热处理的高温固相合成法,制备了一系列白光LED用红色荧光粉CaWO4:Eu3+,L i+,B i3+,利用XRD,SEM和荧光光谱测试对其进行表征。XRD分析表明,所合成的样品为单一的四方晶系CaWO4,Eu3+,L i+,B i3+离子的先后掺杂使基质的部分衍射峰峰位向小角度移动;SEM照片显示,经过预先球磨制备的样品颗粒比较均一,尺寸约为0.5~3μm范围,结晶性好;荧光光谱测试发现这一系列荧光粉不仅可以被紫外光(254 nm)激发,还能被近紫外光(393 nm)和蓝光(465 nm)有效激发,其主发射峰值位于616 nm(Eu3+离子的5D0→7F2跃迁)的红光;另外详细研究了预先球磨的效果、加入H3BO3做助熔剂的质量分数以及Eu3+,L i+,B i3+离子单掺或多掺时的浓度对该体系荧光粉发光特性的影响。  相似文献   

10.
Ce3+,Tb3+,Eu3+共掺杂Sr2MgSi2O7体系的白色发光和能量传递机理   总被引:1,自引:0,他引:1  
通过正交试验,采用高温固相法制备了Sr2-x-y-zMgSi2O7∶xCe3+,yTb3+,zEu3+系列样品.使用X射线衍射仪和荧光光谱仪表征了样品的物相和发光性质,并讨论了Ce3+-Tb3+-Eu3+共掺杂Sr2MgSi2O7体系中的能量传递过程.实验结果表明,在327 nm波长激发下,所合成荧光粉的发射峰主要位于387 nm(蓝紫)、542nm(绿)和611 nm(红)处;分别以387,542和611 nm为监控波长,所得激发光谱显示荧光粉在327 nm处有最好的激发.在327 nm光激发下,系列样品发光进入白光区.最优化的荧光粉为Sr1.91MgSi2O7∶0.01Ce3+,0.05Tb3+,0.03Eu3+,其色坐标为(0.337,0.313),是一种潜在的发光二极管(LED)用白色荧光粉.  相似文献   

11.
12.
13.
14.
15.
A low barrier in the reaction pathway between the double Rydberg isomer of OH(3) (-) and a hydride-water complex indicates that the former species is more difficult to isolate and characterize through anion photoelectron spectroscopy than the well known double Rydberg anion (DRA), tetrahedral NH(4) (-). Electron propagator calculations of vertical electron detachment energies (VEDEs) and isosurface plots of the electron localization function disclose that the transition state's electronic structure more closely resembles that of the DRA than that of the hydride-water complex. Possible stabilization of the OH(3) (-) DRA through hydrogen bonding or ion-dipole interactions is examined through calculations on O(2)H(5) (-) species. Three O(2)H(5) (-) minima with H(-)(H(2)O)(2), hydrogen-bridged, and DRA-molecule structures resemble previously discovered N(2)H(7) (-) species and have well separated VEDEs that may be observable in anion photoelectron spectra.  相似文献   

16.
17.
Huang FQ  Ibers JA 《Inorganic chemistry》2001,40(10):2346-2351
The alkali metal/group 4 metal/polychalcogenides Cs(4)Ti(3)Se(13), Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) have been synthesized by means of the reactive flux method at 823 or 873 K. Cs(4)Ti(3)Se(13) crystallizes in a new structure type in space group C(2)(2)-P2(1) with eight formula units in a monoclinic cell at T = 153 K of dimensions a = 10.2524(6) A, b = 32.468(2) A, c = 14.6747(8) A, beta = 100.008(1) degrees. Cs(4)Ti(3)Se(13) is composed of four independent one-dimensional [Ti(3)Se(13)(4-)] chains separated by Cs(+) cations. These chains adopt hexagonal closest packing along the [100] direction. The [Ti(3)Se(13)(4-)] chains are built from the face- and edge-sharing of pentagonal pyramids and pentagonal bipyramids. Formal oxidation states cannot be assigned in Cs(4)Ti(3)Se(13). The compounds Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) crystallize in the K(4)Ti(3)S(14) structure type with four formula units in space group C(2)(h)()(6)-C2/c of the monoclinic system at T = 153 K in cells of dimensions a = 21.085(1) A, b = 8.1169(5) A, c = 13.1992(8) A, beta = 112.835(1) degrees for Rb(4)Ti(3)S(14);a = 21.329(3) A, b = 8.415(1) A, c = 13.678(2) A, beta = 113.801(2) degrees for Cs(4)Ti(3)S(14); a = 21.643(2) A, b = 8.1848(8) A, c = 13.331(1) A, beta = 111.762(2) degrees for Rb(4)Hf(3)S(14); a = 22.605(7) A, b = 8.552(3) A, c = 13.880(4) A, beta = 110.919(9) degrees for Rb(4)Zr(3)Se(14); a = 22.826(5) A, b = 8.841(2) A, c = 14.278(3) A, beta = 111.456(4) degrees for Cs(4)Zr(3)Se(14); and a = 22.758(5) A, b = 8.844(2) A, c = 14.276(3) A, beta = 111.88(3) degrees for Cs(4)Hf(3)Se(14). These A(4)M(3)Q(14) compounds (A = alkali metal; M = group 4 metal; Q = chalcogen) contain hexagonally closest-packed [M(3)Q(14)(4-)] chains that run in the [101] direction and are separated by A(+) cations. Each [M(3)Q(14)(4-)] chain is built from a [M(3)Q(14)] unit that consists of two MQ(7) pentagonal bipyramids or one distorted MQ(8) bicapped octahedron bonded together by edge- or face-sharing. Each [M(3)Q(14)] unit contains six Q(2)(2-) dimers, with Q-Q distances in the normal single-bond range 2.0616(9)-2.095(2) A for S-S and 2.367(1)-2.391(2) A for Se-Se. The A(4)M(3)Q(14) compounds can be formulated as (A(+))(4)(M(4+))(3)(Q(2)(2-))(6)(Q(2-))(2).  相似文献   

18.
Pure, highly explosive CF(3)C(O)OOC(O)CF(3) is prepared for the first time by low-temperature reaction between CF(3)C(O)Cl and Na(2)O(2). At room temperature CF(3)C(O)OOC(O)CF(3) is stable for days in the liquid or gaseous state. The melting point is -37.5 degrees C, and the boiling point is extrapolated to 44 degrees C from the vapor pressure curve log p = -1875/T + 8.92 (p/mbar, T/K). Above room temperature the first-order unimolecular decay into C(2)F(6) + CO(2) occurs with an activation energy of 129 kJ mol(-1). CF(3)C(O)OOC(O)CF(3) is a clean source for CF(3) radicals as demonstrated by matrix-isolation experiments. The pure compound is characterized by NMR, vibrational, and UV spectroscopy. The geometric structure is determined by gas electron diffraction and quantum chemical calculations (HF, B3PW91, B3LYP, and MP2 with 6-31G basis sets). The molecule possesses syn-syn conformation (both C=O bonds synperiplanar to the O-O bond) with O-O = 1.426(10) A and dihedral angle phi(C-O-O-C) = 86.5(32) degrees. The density functional calculations reproduce the experimental structure very well.  相似文献   

19.
20.
Summary Dichlorobis(methylsalicylato)titanium(IV) reacts with potassium or amine salts of dialkyl or diaryl dithiocarbamates in 11 and 12 molar ratios in anhydrous benzene (room temperature) or in boiling CH2Cl2 to yield mixed ligand complexes: (AcOC6H4O)2 Ti(S2CNR2)Cl (1) and (AcOC6H4O)2 Ti(S2CNR2)2 (2), R=Et, n-Pr, n-Bu, cyclo-C4H8 and cyclo-C5H10. These compounds are moisture sensitive and highly soluble in polar solvents. Molecular weight measurement in conjunction with i.r.,1H and13C n.m.r. spectral studies suggest coordination number 7 and 8 around titanium(IV) in (1) and (2) respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号