首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
 利用扫描隧道显微镜 (STM) 和 X 射线光电子能谱 (XPS) 对 Pt(111) 表面制备的 Fe 单层薄膜及其在不同环境气氛条件下的多种结构进行了研究. 在温度为 487 K 的 Pt(111) 表面制备出了完整的 Fe 单层薄膜Fe/Pt(111). 对 Fe/Pt(111) 依次升高温度进行超高真空退火, STM 和 XPS 结果表明退火温度高于 800 K 时, 表面 Fe 原子扩散到次表层区域, 形成次表层 Fe 结构Pt/Fe/Pt(111). Pt/Fe/Pt(111) 在 O2 氧化气氛中经 850 K 退火可转变成表面 FeO 薄膜FeO/Pt(111). FeO/Pt(111) 结构在温和的 H2 还原气氛中 (600 K) 转变成表面 Fe 结构, 进一步的还原处理 (800 K) 则可以重新生成 Pt/Fe/Pt(111). 控制样品的环境气氛在 O2 和 H2 之间切换, 使得表面 Fe (FeO) 和次表面 Fe 可以重复地转变. 本研究实现了多种 Fe-Pt 表面结构的可控制备, 可为合理地设计高效、价廉的催化剂提供借鉴.  相似文献   

2.
欧阳润海  李微雪 《催化学报》2013,34(10):1820-1825
采用密度泛函理论研究了CO气氛对FeO(111)/Ru(0001)负载Au原子吸附位、电荷及其稳定性的影响. 首先考察了FeO(111)单层薄膜在Ru(0001)表面上的界面结构. 研究发现,表面莫尔超晶胞内的HCP区域有最小的Fe-O层间距(rumpling),且Fe和O原子均与衬底Ru形成化学键. Au原子在FeO/Ru(0001)上最稳定的吸附在HCP区域的Fe-bridge位. 其中,Au原子诱导两个Fe原子从O原子层的下面翻转到其上面,形成两个Au-Fe键,且Au带负电. 当把体系暴露在CO气氛下后,CO能诱导Au原子从原来最稳定的Fe-bridge位转移到其邻近的O-top位,伴随着Au的电荷从负变到正,形成非常稳定的Au+-CO羰基物. 结果表明,反应气氛对负载金属催化剂的化学状态及其稳定性的影响很大; 同时也强调了反应条件下催化剂原位表征的重要性.  相似文献   

3.
制备并表征了原子分散的模型体系:氧化铈负载的Pt-Co核壳催化剂.采用超高真空物理气相沉积法制备了有序CeO2(111)膜上的Pt@Co和Co@Pt核壳纳米结构,并用同步辐射光电子能谱和共振光发射光谱对其进行了研究.在低Co覆盖率(0.5 ML)下Co在CeO2(111)上沉积生成Co-CeO2(111)固溶体,然后在更高Co覆盖率下生长为金属Co纳米粒子.Pt@Co和Co@Pt两种模型结构在300-500 K温度范围内都能稳定地抗烧结.在500 K退火后, Pt@Co纳米结构含有接近纯的钴壳,而Co@Pt中的铂壳部分被金属钴覆盖.在550 K以上,在Pt@Co和Co@Pt纳米结构中近表面区域的重新排序中产生了次表层的Pt Co合金和富铂外壳.对于Co@Pt纳米粒子,近表面区域的化学有序性取决于沉积铂壳的初始厚度.无论初始铂壳的厚度如何,在有氧存在下对Co@Pt纳米结构进行退火,都会导致Pt-Co合金的分解以及Co的氧化.Co的逐步氧化与吸附质诱导的Co偏析共同导致在负载的Co@Pt纳米结构表面形成厚的Co O层.这一过程伴随着CeO2(111)薄膜的裂解,以及在550K以上氧气中退火后CeO2包裹氧化的Co@Pt纳米结构.很明显,于不同温度下在氧气和氢气的氧化-还原循环过程中,无论铂的初始厚度是多少,负载的Co@Pt纳米颗粒的结构和化学成分的变化主要是由氧化所致,而还原处理的影响则很小.  相似文献   

4.
氧化铈基催化材料在催化反应中存在显著的晶面效应,为了在分子尺度上理解其催化化学,需要可控合成具有明确表面结构的氧化铈.因此,我们研究了Pt(111)上氧化铈纳米结构和薄膜的生长.人们通常使用金属-氧化物之间的强相互作用来解释Pt/CeO_x催化剂上的催化过程,然而对于Pt与CeO_x之间的强相互作用仍旧缺乏原子尺度上的了解.我们的结果表明, Pt与氧化铈之间的相互作用可以影响氧化铈的表界面结构,这可能会进而影响Pt/CeO_x催化剂的性质.在Pt(111)上生长的氧化铈薄膜通常暴露CeO_2(111)表面.我们发现Pt(111)表面厚度在三层以内的氧化铈薄膜,其结构是高度动态且随着退火温度升高而变化的,这种动态结构变化可归因于Pt和氧化铈间的界面电子作用.当氧化铈薄膜的厚度增大到三层以上,其负载的氧化铈团簇开始表现出迥异于三层以下氧化铈纳米岛的优异的热稳定性,表明Pt与CeO_x之间的界面电子作用主要影响厚度在三层以内的氧化铈纳米结构.采用常规的反应沉积方法难以获得完全覆盖Pt(111)衬底的规整氧化铈薄膜,而我们通过采取一种两步的动力学限制生长方法,制备出了完全覆盖Pt(111)衬底的氧化铈薄膜.对于Pt(111)上厚度约为3-4层的氧化铈薄膜,在超高真空中于1000 K退火会导致氧化铈薄膜表面形成CeO_2(100)结构.这是因为高温还原促进了c-Ce_2O_3(100)缓冲层的形成,该缓冲层被Pt的界面电子转移以及相匹配的超晶格所稳定,并进一步成为顶层CeO_2(100)结构生长的模板.进一步在900 K的氧气中处理则可将薄膜CeO_2(100)表面完全转变为CeO_2(111)表面.因此, Pt(111)上氧化铈纳米岛和薄膜所展现的结构动态变化是由Pt-CeO_x界面作用与氧化铈层间作用相互竞争所决定.本研究提供了对氧化铈负载Pt催化剂的原子级理解,虽然Pt/CeO_2催化剂活性增强的原因常被简单归结于界面强相互作用,我们的研究在原子尺度上进一步表明Pt/CeO_2在还原条件下易形成界面Ce_2O_3层.此外,本研究提供了不同晶面二氧化铈模型催化剂的构筑方法,可将对氧化铈晶面效应和Pt/CeO_x催化剂的研究推进到分子尺度.  相似文献   

5.
制备并表征了原子分散的模型体系:氧化铈负载的Pt-Co核壳催化剂.采用超高真空物理气相沉积法制备了有序CeO_2(111)膜上的Pt@Co和Co@Pt核壳纳米结构,并用同步辐射光电子能谱和共振光发射光谱对其进行了研究.在低Co覆盖率(0.5 ML)下Co在CeO_2(111)上沉积生成Co-CeO_2(111)固溶体,然后在更高Co覆盖率下生长为金属Co纳米粒子.Pt@Co和Co@Pt两种模型结构在300-500 K温度范围内都能稳定地抗烧结.在500 K退火后, Pt@Co纳米结构含有接近纯的钴壳,而Co@Pt中的铂壳部分被金属钴覆盖.在550 K以上,在Pt@Co和Co@Pt纳米结构中近表面区域的重新排序中产生了次表层的Pt Co合金和富铂外壳.对于Co@Pt纳米粒子,近表面区域的化学有序性取决于沉积铂壳的初始厚度.无论初始铂壳的厚度如何,在有氧存在下对Co@Pt纳米结构进行退火,都会导致Pt-Co合金的分解以及Co的氧化.Co的逐步氧化与吸附质诱导的Co偏析共同导致在负载的Co@Pt纳米结构表面形成厚的Co O层.这一过程伴随着CeO_2(111)薄膜的裂解,以及在550K以上氧气中退火后CeO_2包裹氧化的Co@Pt纳米结构.很明显,于不同温度下在氧气和氢气的氧化-还原循环过程中,无论铂的初始厚度是多少,负载的Co@Pt纳米颗粒的结构和化学成分的变化主要是由氧化所致,而还原处理的影响则很小.  相似文献   

6.
铈基材料因其独特的Ce~(4+)/Ce~(3+)转化性质而广泛运用于非均相催化反应中.尽管在实验和理论上对纯净二氧化铈表面的物理和/或化学性质进行了深入研究,但是与二氧化铈有关的界面结构和反应性能引起了人们的极大兴趣.其中,已有报道表明,氧化铈/金属反向催化剂相较于氧化铈、金属或者金属/氧化铈负载材料能明显提高CO催化氧化和水汽转化等反应活性.然而多数前期研究并没有从理论上给出合理解释,同时也并未说明反向催化剂中氧化铈结构(层数)和性质的关系.可以预见,因受到金属基板的影响,二氧化铈表面的物化性质,如氧空位形成能、电子分布、催化活性等必然会发生变化.本文通过库伦作用校正的密度泛函理论(DFT+U)计算,系统地研究了不同厚度的Ce O_2/Pt(111)反向催化剂几何结构和电子性质,催化CO氧化的性能.本文首先在Pt(111)载体上明确了单层Ce O_2(111)的最佳结构,然后研究随着二氧化铈厚度增加,各复合结构界面热力学稳定性、几何结构和电荷性质的变化.计算结果表明:首先,单层Ce O_2/Pt(111)比双层和三层Ce O_2/Pt(111)复合结构在界面处表现出更强的相互作用,并且其强度与界面结合结构密切相关,如界面O–Pt键的数量及其长度等;其次,氧化铈板层和Pt基板之间的接触会显著影响界面处一个氧化铈层和两个金属层内的电子分布,使氧化铈外暴露表面的氧空位形成能降低~0.3 e V,而界面氧空位形成能则显著降低1.3?1.8 e V,并且当表面上沉积≥2个氧化铈层时,氧化铈/铂复合材料的物理性能会趋向收敛;最后,通过计算单层Ce O_2/Pt(111),单层Ce O_2和模拟体相结构的三层Ce O_2(111)表面上的CO氧化过程,结果表明三者均遵循Mvk机理,并且关键步骤OC…O_s偶联的反应能垒分别是0.45,0.33和0.61 e V,表明三者的活性趋势为ML Ce O_2ML Ce O_2/Pt(111)TL Ce O_2(111).综合考虑到单层Ce O_2/Pt(111)界面处适度的二氧化铈-铂相互作用,一方面可以极大提高复合材料热力学稳定性,另一方面还成功保留了单层二氧化铈的优异催化活性,因此单层Ce O_2/Pt(111)复合材料从理论上认为是一种优异的CO氧化催化剂.  相似文献   

7.
负载型纳米催化剂表面结构与其催化性能之间关系的研究一直受到广泛关注.由于其结构复杂使得人们在研究催化剂构效关系时遇到了很多困难.近年来,大量研究发现反转催化剂在众多反应中表现出优越的催化性能.反转催化剂是将过渡金属氧化物负载于其它金属表面.和传统金属/氧化物催化剂相比,反转催化剂更能突出氧化物在催化反应中的重要作用.众多研究表明,在氧化物-金属界面处存在特殊的作用,这种作用可以改变氧化物的电子特性和化学性质,进而产生较高的催化性能.傅强等人创建了金属氧化物负载于Pt表面的反转催化体系,其表现出了高的低温CO氧化反应性能.在氧化物和Pt之间的界面限域效应可以稳定氧化物中配位不饱和的金属阳离子.这种配位不饱和的氧化物提供了活化O2的活性位.目前,反转催化剂的研究主要集中在单晶模型体系中,在负载型催化剂中的研究还较少.我们以炭黑(CB)为载体,将还原后的Pt-Fe和Pt-Co催化剂经过酸洗制备了一种表面富Pt核为合金的结构.考察了酸洗后的Pt-Fe和Pt-Co催化剂经过不同温度氧化后的结构变化,并讨论了其结构与CO完全氧化反应(COOX)和CO选择氧化反应(CO-PROX)性能的关系.X射线粉末衍射(XRD),电感耦合等离子体发射光谱(ICP),透射电镜(TEM)和X射线光电子能谱(XPS)表征结果表明,还原后的Pt基催化剂经过酸洗可以选择性去除纳米粒子表面的3d过渡金属,形成表面富Pt体相为合金的结构.将酸洗后的Pt-Fe和Pt-Co催化剂在不同温度下空气中氧化,发现近表层的Fe(Co)会扩散到粒子表面上,形成过度氧化的Fe2O3(Co3O4)表面结构.氧化后的催化剂在COOX和CO-PROX反应中表现出截然不同的催化性能.酸洗后的Pt-Fe(Pt-Co)催化剂经过不同温度氧化后在COOX反应中活性都较差,室温下的CO转化率只有不到30%,CO完全转化的温度超过100oC,相当于纯Pt催化剂的活性.这说明Pt表面过度氧化的Fe2O3(Co3O4)对CO氧化反应的促进作用不明显.而氧化后的催化剂在CO-PROX反应中表现出较高的活性,250oC(或350oC)氧化后的酸洗Pt-Fe催化剂室温下的CO转化率接近100%,250oC(或350oC)氧化后的酸洗Pt-Co催化剂室温下的CO转化率也达到了70%.结合表征和反应结果,我们认为氧化处理形成的表面过度氧化的金属氧化物(Fe2O3,Co3O4)在COOX的催化性能较差.通入CO-PROX反应气后,气氛中大量H2的存在和Pt表面的氢溢流效应可以使得表面Fe2O3,Co3O4在室温下被还原成配位不饱和的FeO,CoO.这种配位不饱和的氧化物在表面Pt的限域作用和大量H2气氛下比较稳定,并且具有较强的活化解离O2的能力,进而提高了CO-PROX反应的活性.为了进一步证实催化剂表面氧化物与其催化性能的关系,我们在室温下进行了两种反应气的循环实验测试.测试结果表明,对于氧化后的酸洗Pt-Fe催化剂,COOX反应中的表面Fe2O3和CO-PROX反应中的表面FeO可以通过变换反应气氛实现两种氧化物的相互转变,并表现出完全不同的催化性能.对于氧化后的酸洗Pt-Co催化剂,CO-PROX反应中形成的CoO表面结构在COOX反应中也比较稳定,在两种反应气中表现出相似的催化性能.  相似文献   

8.
采用密度泛函理论(DFT)和周期平板模型,研究两种WC(0001)表面的几何结构和表面能,并对Pt原子单层(PtML)在两种WC(0001)表面的高对称性吸附位上的吸附能和分离功进行计算.结果发现,终止于W原子的WC(0001)为最稳定的WC(0001)表面,Pt原子单层以hcp位的方式吸附于W终止的WC(0001)表面是PtML/WC(0001)体系最稳定的几何构型.在此基础上研究了CO分子和H原子分别在PtML/WC(0001)表面和具有相似表面结构的Pt(111)表面的吸附行为.在0.25 ML(monolayer)低覆盖度下,与在Pt(111)表面相比,在PtML/WC(0001)表面上的Pt—C间距明显拉长和CO分子吸附能减少,说明PtML/WC(0001)表面抗CO中毒能力比Pt(111)表面高;态密度分析进一步解释了CO分子与不同表面Pt原子的成键机理.在同一覆盖度下,H原子在PtML/WC(0001)表面的最大吸附能等于甚至略高于在Pt(111)表面的,表明Pt/WC对氢气氧化反应具有良好的催化活性,是一种很有前途的质子交换膜燃料电池(PEMFC)阳极催化剂.  相似文献   

9.
用基于密度泛函理论的第一性原理方法研究了氧原子在具有Pt皮肤的Pt3Ni(111)[记为Pt-skin-Pt3Ni(111)]表面的吸附和扩散特性. 重点研究了氧原子在Pt-skin-Pt3Ni(111)表面的扩散问题, 这对理解Pt-skin-Pt3Ni(111)催化剂的高催化活性有重要意义. 结果表明: 氧原子容易吸附在fcc位; 催化剂Pt3Ni中的Ni原子对催化剂的电子结构有很大影响, 从而改变了其对氧原子的吸附. 用推拉弹性带(NEB)方法搜索氧原子的扩散势垒, 并解释了Pt-skin-Pt3Ni(111)催化剂的高催化活性.  相似文献   

10.
采用密度泛函理论(DFT)研究了氧吸附后Pt/Cu(001)表面合金的原子结构和表面性质.计算结果表明,在Pt/Cu(001)-p(2×2)-O表面最稳定结构中,衬底表面原子层不发生再构,氧原子吸附于4重对称的Pt原子谷位,每个氧原子吸附能约为2.303 eV.吸附结构的Cu—O和Pt—O键键长分别为0.202和0.298 nm,氧原子的吸附高度ZCu—O约为0.092 nm.吸附前后Pt/Cu(001)-1ML(monolayer)表面合金的表面功函数分别为4.678和5.355 eV.吸附表面氧原子和衬底的结合主要来自氧原子2p轨道和衬底金属原子d轨道的杂化作用,氧原子吸附形成的表面电子态主要位于费米能级以下约-2.7 eV处.  相似文献   

11.
使用密度泛函方法对C原子在Fe(111)表面吸附团聚和次表层的吸附扩散进行了研究。在炭覆盖度θC <1 ML时,C主要以孤立的原子态存在并导致表面重构;1 ML≤θC ≤2 ML,"mC2+nC"为主要的吸附形式;θC≥2 ML时,复杂的吸附形态比如碳链和岛状碳团簇开始生成。这些复杂岛状碳团簇是Fe(111)表面石墨沉积或碳纳米管生长的成核中心。在次表层,C原子在八面体位稳定存在。C在表面的迁移能垒为0.45 eV,由表面迁移到次表面的的能垒为0.73 eV。虽然C2团簇的生成是热力学有利的,但是C向次表层的迁移动力学上占优。  相似文献   

12.
光催化合成氨是一种绿色节能的合成氨技术,设计制造丰富的表面氧空位和异质结构是促进氮分子活化和抑制电子-空穴复合的重要方法。我们以乙二醇作为还原剂,采用溶剂热法制备合成了Fe2O3/ZnO光催化剂,利用X射线衍射(XRD)、透射电镜(TEM)、电子顺磁共振(EPR)、紫外-可见漫反射(UV-Vis DRS)、荧光光谱(PL)及光电流(PC)对Fe2O3/ZnO催化剂进行表征,并考察了Fe2O3/ZnO催化剂在常温、常压下的光催化合成氨的性能。4%Fe2O3/ZnO催化剂在无牺牲剂下用于光催化合成氨,有较好的光催化效率和稳定性,其合成氨效率达到2059μmol·L-1·g-1·h-1。其高催化效率归因于:可见光区域吸收的提高、氮分子在表面氧空位与Fe3+活性中心上的协同活化及光生电子与空穴的高分离效率。  相似文献   

13.
We report a systematic investigation of the effects of different surface and subsurface point defects on the adsorption of formaldehyde on rutile TiO(2)(110) surfaces using density functional theory (DFT). All point defects investigated--including surface bridging oxygen vacancies, titanium interstitials, and subsurface oxygen vacancies--stabilize the adsorption significantly by up to 56 kJ mol(-1) at a coverage of 0.1 monolayer (ML). The stabilization is due to a decrease of the coordination (covalent saturation) of the surface Ti adsorption sites adjacent to the defects, which leads to a stronger molecule-surface interaction. This change in the Ti is caused by the removal of a neighboring atom (oxygen vacancies) or substantial lattice relaxations induced by the subsurface defects. On the stoichiometric reference surface, the most stable adsorption geometry of formaldehyde is a tilted η(2)-dioxymethylene (with an adsorption energy E(ads)=-125 kJ mol(-1)), in which a bond forms to a nearby bridging O atom and the carbonyl-O atom in the formaldehyde binds to a Ti atom in the adjacent fivefold coordinated lattice site. The η(1)-top configuration on five-coordinate Ti(4+) is much less favorable (E(ads)=-69 kJ mol(-1)). The largest stabilization is exerted by subsurface Ti interstitials between the first and second layers. These defects stabilize the η(2)-dioxymethylene structure by nearly 40 kJ mol(-1) to an adsorption energy of -164 kJ mol(-1). Contrary to popular belief, adsorption in a bridging oxygen vacancy (E(ads)=-86 kJ mol(-1)) is much less favorable for formaldehyde compared to the η(2)-dioxymethylene structures. From these results we conclude that formaldehyde will bind in the η(2)-dioxymethylene structure on the stoichiometric surface as well as in the presence of Ti interstitials and bridging oxygen vacancies. In the light of these substantial effects, we conclude that it is essential to include all the types of point defects present in typical, reduced rutile samples used for model studies, at realistic concentrations to obtain correct adsorption sites, structures, energetic, and chemi-physical properties.  相似文献   

14.
Ordered iron oxide ultrathin films were fabricated on a single-crystal Mo(110) substrate under ultrahigh vacuum conditions by either depositing Fe in ambient oxygen or oxidizing preprepared Fe(110) films. The surface structure and electronic structure of the iron oxide films were investigated by various surface analytical techniques. The results indicate surface structural transformations from metastable FeO(111) and O-terminated Fe(2)O(3)(0001) to Fe(3)O(4)(111) films, respectively. The former depends strongly on the oxygen pressure and substrate temperature, and the latter relies mostly upon the annealing temperature. Our experimental observations are helpful in understanding the mechanisms of surface structural evolution in iron oxides. The model surfaces of Fe-oxide films, particularly O-terminated surfaces, can be used for further investigation in chemical reactions (e.g., in catalysis).  相似文献   

15.
By using density functional theory calculations at the PBE+U level, we investigated the properties of hematite (0001) surfaces decorated with adatoms/vacancies/substituents. For the most stable surface termination over a large range of oxygen chemical potentials (${\mu _{\rm{O}} }$ ), the vacancy formation and adsorption energies were determined as a function of ${\mu _{\rm{O}} }$ . Under oxygen‐rich conditions, all defects are metastable with respect to the ideal surface. Under oxygen‐poor conditions, O vacancies and Fe adatoms become stable. Under ambient conditions, all defects are metastable; in the bulk, O vacancies form more easily than Fe vacancies, whereas at the surface the opposite is true. All defects, that is, O and Fe vacancies, Fe and Al adatoms, and Al substituents, induce important modifications to the geometry of the surface in their vicinity. Dissociative adsorption of molecular oxygen is likely to be exothermic on surfaces with Fe/Al adatoms or O vacancies.  相似文献   

16.
Scanning tunneling microscopy (STM) was employed to study the mechanism for the oxidation of Al(111) with thermal O2 and NO in the 20%-40% monolayer coverage regime. Experiments show that the islands formed upon exposure to thermal O2 and NO have dramatically different shapes, which are ultimately dictated by the dynamics of the gas surface interaction. The circumference-to-area ratio and other island morphology statistics are used to quantify the average difference in the two island types. Ultrahigh-vacuum STM was employed to make the following observations: (1) Oxygen islands on the Al(111) surface, formed upon exposure to thermal oxygen, are elongated and noncompact. (2) Mixed O/N islands on the Al(111) surface, formed upon exposure to thermal nitric oxide (NO), are round and compact. (3) STM movies acquired during thermal O2 exposure indicate that a complex mechanism involving chemisorption initiated rearrangement of preexisting oxygen islands leads to the asymmetric and elongated island shapes. The overall mechanism for the oxidation of the Al(111) surface can be summarized in three regimes. Low coverage is dominated by widely isolated small oxygen features (<3 O atoms) where normal dissociative chemisorption and oxygen abstraction mechanisms are present. At 20%-40% monolayer coverage, additional oxygen chemisorption induces rearrangement of preexisting islands to form free-energy minimum island shapes. At greater than approximately 40% monolayer coverage, the apparent surface oxygen coverage asymptotes corresponding to the conversion of the 2D islands to 3D Al2O3 surface crystallites. The rearrangement of oxygen islands on the surface to form the observed islands indicates that there is a short-range oxygen-oxygen attractive potential and a long-range oxygen-oxygen repulsive potential.  相似文献   

17.
The adsorption of water on FeO(111) is investigated using temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRAS). Well-ordered 2 ML thick FeO(111) films are grown epitaxially on a Pt(111) substrate. Water adsorbs molecularly on FeO(111) and desorbs with a well resolved monolayer peak. IRAS measurements as a function of coverage are performed for water deposited at 30 and 135 K. For all coverages (0.2 ML and greater), the adsorbed water exhibits significant hydrogen bonding. Differences in IRAS spectra for water adsorbed at 30 and 135 K are subtle but suggest that water adsorbed at 135 K is well ordered. Monolayer nitrogen TPD spectra from water covered FeO(111) surfaces are used to investigate the clustering of the water as a function of deposition or annealing temperature. Temperature dependent water overlayer structures result from differences in water diffusion rates on bare FeO(111) and on water adsorbed on FeO(111). Features in the nitrogen TPD spectra allow the monolayer wetting and 2-dimensional (2D) ordering of water on FeO(111) to be followed. Voids in a partially disordered first water layer exist for water deposited below 120 K and ordered 2D islands are found when depositing water above 120 K.  相似文献   

18.
The oxidation states formed during low-temperature oxidation (T < 500 K) of a Ru(0001) surface are identified with photoelectron spectromicroscopy and thermal desorption (TD) spectroscopy. Adsorption and consecutive incorporation of oxygen are studied following the distinct chemical shifts of the Ru 3d(5/2) core levels of the two topmost Ru layers. The evolution of the Ru 3d(5/2) spectra with oxygen exposure at 475 K and the corresponding O2 desorption spectra reveal that about 2 ML of oxygen incorporate into the subsurface region, residing between the first and second Ru layer. Our results suggest that the subsurface oxygen binds to the first and second layer Ru atoms, yielding a metastable surface "oxide", which represents the oxidation state of an atomically well ordered Ru(0001) surface under low-temperature oxidation conditions. Accumulation of more than 3 ML of oxygen is possible via defect-promoted penetration below the second layer when the initial Ru(0001) surface is disordered. Despite its higher capacity for oxygen accumulation, also the disordered Ru surface does not show features characteristic for the crystalline RuO2 islands. Development of lateral heterogeneity in the oxygen concentration is evidenced by the Ru 3d(5/2) images and microspot spectra after the onset of oxygen incorporation, which becomes very pronounced when the oxidation is carried out at T > 550 K. This is attributed to facilitated O incorporation and oxide nucleation in microregions with a high density of defects.  相似文献   

19.
The kinetics of 18O/16O isotopic exchange over CeO2-ZrO2-La2O3 and Pt/CeO2-ZrO2 catalysts have been investigated under the conditions of dynamic adsorption-desorption equilibrium at atmospheric pressure and a temperature range of 650-850 degrees C. The rates of oxygen adsorption-desorption on Pt sites, support surface, oxygen transfer (spillover) from Pt to the support as well as the amount of oxygen accumulated in the oxide bulk, and oxygen diffusion coefficient were estimated. The nanocrystalline structure of lanthana-doped ceria-zirconia prepared via the Pechini route with a developed network of domain boundaries and specific defects guarantees a high oxygen mobility in the oxide bulk (D = (1.5 / 2.0).10-18 m2 s-1 at 650 degrees C) and allows accumulation of over-stoichiometric/excess oxygen. For Pt/CeO2-ZrO2, oxygen transfer from Pt to support (characteristic time < 10-2 s) was shown to be responsible for the fast exchange between the gas-phase oxygen and oxygen adsorbed on the mixed oxide surface. The rate of direct exchange between the gas phase and surface oxygen is increased as well due to the increased concentration (up to 2 monolayers) of surface/near subsurface oxygen species accumulated on the oxygen vacancies (originated from the incorporation of highly dispersed Pt atoms). The characteristic time of diffusion of the oxygen localized in the subsurface layers is about 1 s. The overall quantity of over-stoichiometric oxygen and/or hydroxyl groups accumulated in the bulk can reach the equivalent of 10 monolayers, and characteristic time of oxygen diffusion within the bulk is about 20 s. All these kinetic data are required for the further step of modeling partial oxidation of hydrocarbons under steady- and unsteady-state conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号