首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel typography technique was developed to in situ synthesize oligonucleotide arrays on glass slide, which has the celerity, high spatial resolution, lower cost, reliable operation, and high synthetic efficiency. The principle and process of the typography technique for fabricating gene-chips have been described in detail. A suit of poly(terafluoroethylene) devices for synthesizing oligonucleotide arrays were designed and prepared, and the fiber tubes with a number of nano-or micron-channels were employed. The oligonucleotide arrays of 16 and 160 features with four different probes were synthesized using the typography technique. The four specific oligonucleotide probes including the matched and the mismatched by the fluorescent target sequence gave obviously different hybridization fluorescent signals. It was indicated that the gene-chip fabricated by the typography method could be used to rapidly screen single-nucleotide polymorphisms (SNP) and to detect mutations. Supported by the National Natural Science Foundation of China (Grant Nos. 60571032, 60571001, 90606027 and 60121101), the National Hi-Tech Research and Development Program of China (Grant No. 2006AA03Z357), the Natural Science Foundation of Hunan Province (Grant Nos. 04jj40023 and 06JJ4012) and the Natural Science Foundation of Guangdong Province (Grant No. 04008782)  相似文献   

2.
A novel maskless technique,self-driving micro-fluid porous type printing(SMPTP),was reported to in situ synthesize oligonucleotide arrays on glass slide,which has the merits of low cost,high quality and simple craft.In SMPTP for fabricating gene- chips,porous fiber tubes with a number of nanometric or micron channels functioned as“active letters”and were assembled in designed patterns,which are identical to the distribution of monomers in each layer of the array,and four patterns were needed for each layer.By means of capillarity,the synthesis solution was automatically taken into porous tubes assembled in a printing plate and reached the surface.An oligonucleotide array of 160 features with four different 15-mer probes was in situ synthesized using this technique.The four specific oligonucleotide probes,including the matched and the mismatched by the fluorescent target sequence,gave obviously different hybridization fluorescent signals.  相似文献   

3.
A new approach to oligonucleotide arrays is demonstrated that utilizes zirconium phosphonate-derivatized glass slides. The active slides are prepared by binding Zr(4+) to surfaces terminated with organophosphonate groups previously deposited using either Langmuir-Blodgett or self-assembled monolayer methods. Oligonucleotide probes modified with a terminal phosphate bind strongly to the active zirconium phosphonate monolayer, and arrays for detecting fluorescent targets have been prepared using commercial spotting and scanning instruments. Preferred binding to the surface of the terminal phosphate of the modified probes instead of the internal phosphate diester groups is demonstrated and shown to yield increased fluorescence intensity after hybridization with labeled targets. A significant decrease in background signal is achieved by treating the slides with bovine serum albumin after spotting and before hybridization. A further increase in fluorescence after hybridization is observed when using a poly-guanine spacer between the probe oligomer and the terminal phosphate. Combining these modifications, an intensity ratio of nearly 1000 is achieved when comparing 5'-phosphate-modified 33-mer probes with unmodified probes upon hybridization with fluorescent targets.  相似文献   

4.
We demonstrated the use of X-ray photoelectron spectroscopy (XPS) to study DNA hybridization. Target DNA labeled with hexachloro-fluorescein (HEX) was hybridized to DNA arrays with four different probes. Each probe dot of the hybridized arrays was detected with XPS. The XPS Cl2p peak areas were found to decrease with an increase in mismatched bases in DNA probes. The Cl2p core-level peak area ratio of a probe perfectly matched to one, two and three base-mismatched probes accorded well with the results of conventional fluorescent imaging, which shows that XPS is a potential tool for analyzing DNA arrays. The DNA arrays’ hybridization efficiency was assessed by the molar ratio of chlorine to phosphorus in a DNA strand, which was determined from the relevant XPS Cl2p and P2p core-level peak areas after hybridization. This could provide a new method to detect DNA hybridization efficiency.  相似文献   

5.
A strategy for the production and subsequent characterization of biofunctionalized silica particles is presented. The particles were engineered to produce a bifunctional material capable of both (a) the attachment of fluorescent dyes for particle encoding and (b) the sequential modification of the surface of the particles to couple oligonucleotide probes. A combination of microscopic and analytical methods is implemented to demonstrate that modification of the particles with 3-aminopropyl trimethoxysilane results in an even distribution of amine groups across the particle surface. Evidence is provided to indicate that there are negligible interactions between the bound fluorescent dyes and the attached biomolecules. A unique approach was adopted to provide direct quantification of the oligonucleotide probe loading on the particle surface through X-ray photoelectron spectroscopy, a technique which may have a major impact for current researchers and users of bead-based technologies. A simple hybridization assay showing high sequence specificity is included to demonstrate the applicability of these particles to DNA screening.  相似文献   

6.
Oligonucleotides with sequences of human telomere DNA or thrombin binding aptamer (TBA) are known to form tetraplex structures upon binding the K(+) ion. Structural changes associated with the formation of tetraplex assemblies led to the development of potassium-sensing oligonucleotide (PSO) probes, in which two fluorescent dyes were attached to both termini of particular oligonucleotide. The combination of dyes included fluorescence resonance energy transfer (FRET) and excimer emission approaches, and the structural changes upon binding K(+) ion could be monitored by a fluorescence technique. These systems showed a very high preference for K(+) over Na(+) ion, which was suitable for fluorescence imaging of the potassium concentration gradient in a living cell. In the case of human telomere DNA, it was also possible to follow the polymorphism of its tetraplex structures.  相似文献   

7.
Signal enhancement of oligonucleotide and protein arrays on ARChip Epoxy was achieved by optimizing chip processing parameters. The parameters investigated were fabrication, blocking and guide dot concentration, probe concentration and modification, print buffer, humidity during arraying, slide agitation, spot volume and spotter compatibility. The optimum oligonucleotide concentration was 20 microM, while the optimum protein concentration was 0.05 mg/ml. Amino-modified oligonucleotides were best able to be bound to the resin's epoxy groups at pH 8, whereas thiol-modified oligonucleotides displayed an optimum coupling value of pH 7. So as to avoid background (BG) contamination of probes around bright guide dots, the concentration of fluorescent guide dots was set to 1 muM. The most suitable print buffers for oligonucleotide arrays using both piezo- and contact-printing systems proved to be 3 x SSC/1.5 M betaine and commercial ArrayLink. When 0.01% monochlortriazinyl-beta-cyclodextrin sodium salt (MCT) was added, the hybridization signal doubled in strength as compared to plain buffer. The optimum print buffer for proteins was 0.1 N phosphate buffer, pH 8/10% glycerine. The optimum humidity for arraying oligonucleotides was 60% and for proteins 40%. Initially agitating slides for 15 min was found just as effective as agitating slides over the total hybridization period (2.5 h), and this resulted in a three times stronger signal.  相似文献   

8.
基于三维(3D)寡核苷酸微阵列芯片的荧光检测法, 研制了一种用于筛选能检测2型糖尿病的特定寡核苷酸探针. 使用第4代(G4)聚(酰胺-胺)(PAMAM)树枝状大分子修饰的载玻片为基底, 以氨基修饰的寡核苷酸为固定探针构建3D寡核苷酸微阵列芯片. 采用荧光化合物Cy5修饰的寡核苷酸为检测探针获得荧光信号. 以2型糖尿病易感基因TCF7L2的rs7903146位点为研究对象, 通过对含有16种(8对)寡核苷酸的寡核苷酸文库的筛选, 获得了1对能用于2型糖尿病检测的寡核苷酸探针. 通过单核苷酸多态性和等位基因分析证明, 该寡核苷酸探针对靶标寡核苷酸检测具有高特异性, 并能准确检测低至2%的等位基因频率.  相似文献   

9.
Due to their high sensitivity and selectivity, minimum interference with living biological systems, and ease of design and synthesis, fluorescent hybridization probes have been widely used to detect nucleic acids both in vivo and in vitro. Molecular beacons (MBs) and binary probes (BPs) are two very important hybridization probes that are designed based on well-established photophysical principles. These probes have shown particular applicability in a variety of studies, such as mRNA tracking, single nucleotide polymorphism (SNP) detection, polymerase chain reaction (PCR) monitoring, and microorganism identification. Molecular beacons are hairpin oligonucleotide probes that present distinctive fluorescent signatures in the presence and absence of their target. Binary probes consist of two fluorescently labeled oligonucleotide strands that can hybridize to adjacent regions of their target and generate distinctive fluorescence signals. These probes have been extensively studied and modified for different applications by modulating their structures or using various combinations of fluorophores, excimer-forming molecules, and metal complexes. This review describes the applicability and advantages of various hybridization probes that utilize novel and creative design to enhance their target detection sensitivity and specificity.  相似文献   

10.
Double‐labeled oligonucleotide probes containing fluorophores interacting by energy‐transfer mechanisms are essential for modern bioanalysis, molecular diagnostics, and in vivo imaging techniques. Although bright xanthene and cyanine dyes are gaining increased prominence within these fields, little attention has thus far been paid to probes containing these dyes internally attached, a fact which is mainly due to the quite challenging synthesis of such oligonucleotide probes. Herein, by using 2′‐O‐propargyl uridine phosphoramidite and a series of xanthenes and cyanine azide derivatives, we have for the first time performed solid‐phase copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) click labeling during the automated phosphoramidite oligonucleotide synthesis followed by postsynthetic click reactions in solution. We demonstrate that our novel strategy is rapid and efficient for the preparation of novel oligonucleotide probes containing internally positioned xanthene and cyanine dye pairs and thus represents a significant step forward for the preparation of advanced fluorescent oligonucleotide probes. Furthermore, we demonstrate that the novel xanthene and cyanine labeled probes display unusual and very promising photophysical properties resulting from energy‐transfer interactions between the fluorophores controlled by nucleic acid assembly. Potential benefits of using these novel fluorescent probes within, for example, molecular diagnostics and fluorescence microscopy include: Considerable Stokes shifts (40–110 nm), quenched fluorescence of single‐stranded probes accompanied by up to 7.7‐fold light‐up effect of emission upon target DNA/RNA binding, remarkable sensitivity to single‐nucleotide mismatches, generally high fluorescence brightness values (FB up to 26), and hence low limit of target detection values (LOD down to <5 nM ).  相似文献   

11.
We report on DNA arrays produced by dip pen nanolithography (DPN) on a novel Au-Ag micropatterned template stripped surface. DNA arrays have been investigated by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) showing that the patterned template stripped substrate enables easy retrieval of the DPN-functionalized zone with a standard optical microscope permitting multi-instrument and multitechnique local detection and analysis. Moreover the smooth surface of the Au squares ( approximately 5-10 A roughness) allows AFM/STM to be sensitive to the hybridization of the oligonucleotide array with label-free target DNA. Our Au-Ag substrates, combining the retrieving capabilities of the patterned surface with the smoothness of the template stripped technique, are candidates for the investigation of DPN nanostructures and for the development of label-free detection methods for DNA nanoarrays based on the use of scanning probes.  相似文献   

12.
聚丙烯片基不同气氛下等离子体改性及DNA原位合成研究   总被引:2,自引:0,他引:2  
汤建新  周灵君  陈洪  何农跃 《化学学报》2004,62(15):1379-1384,FJ01
分别采用氮气/氢气、氨气和氧气三种不同气氛的等离子体处理了聚丙烯片基,先使其表面接枝功能性基团,然后分别进行寡核苷酸原位合成.光电子能谱(XPS)证实了在其表面分别接枝了大量氨基和其它含氮基团.荧光扫描分析并比较了在三种方法处理的聚丙烯片基上合成的寡核苷酸与靶序列杂交后的荧光强度.结果表明:三种方法处理的聚丙烯片基都可用于DNA原位合成,但从处理工艺和荧光分析结果来看,以氮气/氢气等离子体处理的聚丙烯片基最佳。  相似文献   

13.
Detection of polymerase chain reaction (PCR) products obtained from cultured greenhouse fungal pathogens, Botrytis cinerea and Didymella bryoniae has been achieved using a previously developed microfluidic microarray assembly (MMA) device. The flexible probe construction and rapid DNA detection resulted from the use of centrifugal pumping in the steps of probe introduction and sample delivery, respectively. The line arrays of the oligonucleotide probes were “printed” on a CD-like glass chip using a polydimethylsiloxane (PDMS) polymer plate with radial microfluidic channels, and the sample hybridizations were conducted within the spiral channels on the second plate. The experimental conditions of probe immobilization and sample hybridization were optimized, and both complementary oligonucleotides and PCR products were tested. We were able to achieve adequate fluorescent signals with a sample load as small as 0.5 nM (1 μL) for oligonucleotide samples; for PCR products, we achieved detection at the level of 3 ng.  相似文献   

14.
It is well known that nucleic acids play an essential role in living organisms because they store and transmit genetic information and use that information to direct the synthesis of proteins. However, less is known about the ability of nucleic acids to bind specific ligands and the application of oligonucleotides as molecular probes or biosensors. Oligonucleotide probes are single-stranded nucleic acid fragments that can be tailored to have high specificity and affinity for different targets including nucleic acids, proteins, small molecules, and ions. One can divide oligonucleotide-based probes into two main categories: hybridization probes that are based on the formation of complementary base-pairs, and aptamer probes that exploit selective recognition of nonnucleic acid analytes and may be compared with immunosensors. Design and construction of hybridization and aptamer probes are similar. Typically, oligonucleotide (DNA, RNA) with predefined base sequence and length is modified by covalent attachment of reporter groups (one or more fluorophores in fluorescence-based probes). The fluorescent labels act as transducers that transform biorecognition (hybridization, ligand binding) into a fluorescence signal. Fluorescent labels have several advantages, for example high sensitivity and multiple transduction approaches (fluorescence quenching or enhancement, fluorescence anisotropy, fluorescence lifetime, fluorescence resonance energy transfer (FRET), and excimer-monomer light switching). These multiple signaling options combined with the design flexibility of the recognition element (DNA, RNA, PNA, LNA) and various labeling strategies contribute to development of numerous selective and sensitive bioassays. This review covers fundamentals of the design and engineering of oligonucleotide probes, describes typical construction approaches, and discusses examples of probes used both in hybridization studies and in aptamer-based assays.  相似文献   

15.
A fiber optic microsphere-based oligonucleotide array is described that employs the sequence of the oligonucleotide probe attached to each microsphere as positional identifiers. Each microsphere serves as an immobilized array feature, functionalized with a unique single-stranded oligonucleotide sequence and randomly distributed into an array of microwells. To determine the sequences attached to individual microspheres, a series of fluorescently labeled combinatorial-pooled oligonucleotide target solutions was designed. Each combinatorial decoding solution is intended to identify the nucleotide at a particular position on every microsphere in the array. The combinatorial target solutions were synthesized by linking the four possible nucleotides at each position to four different fluorescent reporter dyes. As such, when the solutions were hybridized to the array, one of four possible fluorescent responses was generated for each position on a microsphere probe sequence. Adjusting the stringency of hybridization enabled single-base mismatch discrimination, and the signal with the highest intensity corresponded to the perfect nucleotide match. By consecutively exposing the array to a series of combinatorial decoding pool solutions, it was possible to simultaneously determine the sequence of every randomly positioned oligonucleotide-functionalized microsphere in the array. Once mapped, the microsphere array can be used for any typical genomic microarray experiment.  相似文献   

16.
A novel method for the detection of specific nucleic acids in homogenous solution was developed. The method is based on the use of duplex probes in which fluorescent donor and quencher labeled on either oligonucleotide are held in close proximity, so that fluorescence is quenched. Amplification of the target sequence results in the cleavage of the probe and the resulting fluorescence can be detected. The fluorescent data analysis demonstrated that the duplex probes can specifically recognize the presence of target, and a significantly higher lever of relative fluorescent signal than TaqMan probes is obtainable. Combined with real-time PCR instruments, the assay can be used to quantify the input target molecules. As few as five copies of initial target molecules can be detected, and a large dynamic linear ranger (five orders of magnitude) is obtained.  相似文献   

17.
An excitonic interaction caused by the H-aggregation of fluorescent dyes is a new type of useful photophysical process for fluorescence-controlled nucleic acid sensing. This critical review points out the recent advances in exciton-controlled hybridization-sensitive fluorescent oligonucleotide (ECHO) probes, which have a fluorescence-labeled nucleotide in which two molecules of thiazole orange or its derivatives are linked covalently. ECHO probes show absorption shift and emission switching depending on hybridization with the target nucleic acid. The hybridization-sensitive fluorescence emission of ECHO probes and the further modification of probes have made possible a variety of practical applications, such as multicolor RNA imaging in living cells and facile detection of gene polymorphism (144 references).  相似文献   

18.
《中国化学快报》2019,30(10):1704-1716
The vicinal dithiol motif is widely present in proteins, and is critical for proteins' structures and functions.In recent years, a variety of fluorescent probes with high specificity and outstanding optical properties for sensing protein vicinal dithiols have been developed. In this review, we summarized the fluorescent probes of protein vicinal dithiols in literature. These probes are classified into four types based on their acceptor sites, i.e., biarsenical probes, monoarsenical probes, dimaleimide probes and diacrylate probes.Through analyzing the properties of different probes, we expect that this review would help readers further understand the structural factors of these probes and provide the design strategy for novel fluorescent probes with improved properties.  相似文献   

19.
A new process for preparing oligonucleotide arrays is described that uses surface grafting chemistry which is fundamentally different from the electrostatic adsorption and organic covalent binding methods normally employed. Solid supports are modified with a mixed organic/inorganic zirconium phosphonate monolayer film providing a stable, well-defined interface. Oligonucleotide probes terminated with phosphate are spotted directly to the zirconated surface forming a covalent linkage. Specific binding of terminal phosphate groups with minimal binding of the internal phosphate diesters has been demonstrated. On the other hand, the reaction of a bisphosphonate bone resorption inhibitor (Zoledronate) with calcium deficient apatites (CDAs) was studied as a potential route to local drug delivery systems active against bone resorption disorders. A simple mathematical model of the Zoledronate/CDA interaction was designed that correctly described the adsorption of Zoledronate onto CDAs. The resulting Zoledronate-loaded materials were found to release the drug in different phosphate-containing media, with a satisfactory agreement between experimental data and the values predicted from the model.  相似文献   

20.
Small molecule fluorescent probes that recognize and label protein vicinal dithiols have been summarized according to their different acceptor sites. This review will provide the purposeful design strategy of novel probes for detecting vicinal dithiols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号