首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
催化表面物理化学主要是研究多相催化反应体系催化剂的表面结构.催化性.能关系和催化反应机理从而获得原子分子水平上的理解,为催化剂的改进和设计提供指导.真实催化剂的结构复杂性和不均一性使得无法明确关联其结构和催化性能.,因此构筑结构均一的模型催化剂体系是进行催化表面物理化学研究的常用方法.本文介绍了本研究组在催化表面物理化学模型体系研究中的研究理念,综述了近5年来取得的研究进展.我们将模型催化剂的概念从传统的基二二单晶/单晶薄膜的模型催化剂拓展到基于纳米晶的模型催化剂,由简单到复杂,在不同层次构筑模型催化剂,开展催化表面物理化学研究.这种研究理念有可能实现在原子分子水平理解真实催化反应条件下的催化剂结构..催化性能关系和催化反应机理.  相似文献   

2.
金催化是纳米催化的代表性体系,金催化作用表现出复杂的结构敏感性。这篇综述总结了金催化作用研究的文献结果和我们利用从单晶到纳米晶的模型催化剂研究金催化作用的进展。展示了NO分解,CO氧化,丙烯在氢气和氧气气氛中环氧化等反应中金催化作用的结构敏感性和金催化剂的活性结构,讨论了金纳米粒子几何结构和电子结构、金纳米粒子–氧化物载体相互作用对金催化作用的影响和金表面低温高催化活性的来源,并展望了金催化作用结构敏感性的未来研究方向。  相似文献   

3.
金催化是纳米催化的代表性体系,金催化作用表现出复杂的结构敏感性。这篇综述总结了金催化作用研究的文献结果和我们利用从单晶到纳米晶的模型催化剂研究金催化作用的进展。展示了NO分解,CO氧化,丙烯在氢气和氧气气氛中环氧化等反应中金催化作用的结构敏感性和金催化剂的活性结构,讨论了金纳米粒子几何结构和电子结构、金纳米粒子–氧化物载体相互作用对金催化作用的影响和金表面低温高催化活性的来源,并展望了金催化作用结构敏感性的未来研究方向。  相似文献   

4.
原子和分子水平层次的表面电化学与电催化研究   总被引:1,自引:0,他引:1  
孙世刚 《电化学》1998,4(1):86-93
本文从金属单晶表面电化学和模型由催化,分子水平上的电催化反应机理和反应途径控制,有机小分子电催化氧化反应动力不冢电催化剂表面化学状态与性能等四个方面,综述本研究小组近年来取得的主要进展,侧重展示在原子和分子等微观层次开展表面电化学和电化学催化的科研方向和结果。  相似文献   

5.
Mingshu CHEN 《物理化学学报》2017,33(12):2424-2437
明确催化剂的活性位本质和构建多相催化的结构和反应性能之间的准确关系是催化基础研究的重点,表面科学研究基于丰富的表征测试手段能够较好地在分子原子水平测定表面结构以明确催化剂活性位本质,并通过高压原位反应池测定相关催化反应性能,获得较可靠的催化剂构效关系。本文简要总结了近年来本人参与的几个模型催化研究例子,包括贵金属表面上CO和烷烃催化氧化的活性表面、纳米Au膜的制备和CO氧化的催化活性位、VO_x/Pt(111)上丙烷氧化的协同作用、Au Pd合金上醋酸乙烯酯合成Au的助催化作用、模型氧化物上纳米Pt的庚烷脱氢环化制甲苯的粒径关系等,以及相关模型催化研究技术的进展。  相似文献   

6.
含氧催化剂在工业催化等多个领域有重要应用.氧离子半径很大,而且往往出现在材料的关键位点,所以一般认为氧与吸附和催化过程密切相关.17O是氧的唯一有核磁共振响应的稳定同位素,其化学范围极宽(1000 ppm),能灵敏反映结构信息;由于是四极核(I1/2),其四极耦合作用也能用于结构研究.因此,17O固体核磁共振谱学应是一种能提供丰富催化剂结构信息的理想表征手段.然而,目前17O固体核磁共振研究催化剂并非常规手段,这主要是因为17O的天然丰度很低,同位素标记较为昂贵和困难,其较低的旋磁比和较大的四极耦合作用导致谱线加宽,难以获得高质量的谱图并加以解析.随着高磁场和高速魔角旋转等技术的发展,17O固体核磁共振谱学可以用于一系列简单氧化物和沸石等催化剂的结构研究.近年来,随着双旋转(DOR)、动态角旋转(DAS)、多量子魔角旋转(MQMAS)以及卫星跃迁魔角旋转(STMAS)等新技术的发展,能够消除二阶四极耦合作用带来的谱线展宽,显著提升谱图分辨率.而诸如交叉极化(CP)和旋转回波双共振(REDOR)技术,已经能用于探索氧与其它原子核空间相关方面的信息,成为研究催化剂相关作用的基础.本文综述了氧化物及相关催化剂17O固体核磁共振谱学研究的新进展.17O核磁共振谱学用于简单氧化物催化剂的结构研究,已经能够区分催化剂结构中不同晶相以及不同结晶学位点的氧物种,而1H→17O双共振实验也能用于选择表面羟基物种.对纳米氧化物结构的近期研究表明,17O核磁共振能将纳米氧化铈材料表面第1、2、3层、表面羟基、与氧空位靠近的氧物种与"体相"氧物种区分开来;此外借助17O-水和纳米氧化物作用,实现表面选择标记,为进一步探索催化剂结构和催化机理提供了新的可能.对于复合氧化物和负载催化剂,17O核磁共振谱学能够有效研究与催化性能最为相关的界面结构.在重要的氧化物催化材料沸石的研究中,17O核磁共振也发挥了巨大作用.借助高分辨率17O核磁共振方法,能够区分沸石中Si-O-Si和Si-O-Al物种,在一部分沸石中还能将不同结晶学位置的T-O-T’物种区分开来,并观测到天然沸石中违反Lowenstein规则,出现Al-O-Al物种的情况.借助双共振实验能够对与催化活性最为相关的B酸位Si-O(H)-Al结构和酸性进行研究,这一方法与探针分子相结合,已经能够对沸石和小分子的相互作用进行研究,提供吸附过程的重要信息.包括杂多酸和层状双氢氧化物在内的重要含氧催化材料也能够借助17O固体核磁共振进行局域结构和相互作用的研究.随着表面选择标记和动态核极化等选择表面研究的17O核磁共振技术的发展,我们能实现更为高效的表面结构的17O核磁共振观测,这一谱学方法将提供更多有关含氧催化剂和外来物种相互作用的信息,为研究氧化物催化剂及其催化应用提供新的策略.  相似文献   

7.
氧化物单晶化薄膜的制备与表征是研究氧化物表面性质的重要方法,也是模型催化研究的前沿领域。本文主要综述了Fritz-Haber研究所的Hajo Freund小组在过去几年间围绕着以Mo(001)为衬底制备的CaO(001)薄膜模型催化体系而进行的表面结构和化学性质的系列研究。其中既包含了氧化物薄膜研究的共同特点,如界面效应、膜厚效应等,也包含有CaO/Mo体系独特的性质,如Mo的自发掺杂对表面性质的调控作用。在该系列研究中低温扫描隧道显微镜(LT-STM)技术的应用贯穿了方方面面,从原子结构表征到电子性质研究,从杂质缺陷的鉴别到表面物种荷电性质的分析等。STM所获得的微观信息直接从原子分子水平揭示了调控薄膜表面性质的各种控因。特别的,在理论计算的辅助下,不断深化认识氧化物掺杂调控的原理和机制,为设计新型催化剂提供重要思路。  相似文献   

8.
沈丽  彭路明 《催化学报》2015,(9):1494-1504
含氧催化剂在工业催化等多个领域有重要应用.氧离子半径很大,而且往往出现在材料的关键位点,所以一般认为氧与吸附和催化过程密切相关.17O是氧的唯一有核磁共振响应的稳定同位素,其化学范围极宽(>1000 ppm),能灵敏反映结构信息;由于是四极核(I>1/2),其四极耦合作用也能用于结构研究.因此,17O固体核磁共振谱学应是一种能提供丰富催化剂结构信息的理想表征手段.然而,目前17O固体核磁共振研究催化剂并非常规手段,这主要是因为17O的天然丰度很低,同位素标记较为昂贵和困难,其较低的旋磁比和较大的四极耦合作用导致谱线加宽,难以获得高质量的谱图并加以解析.随着高磁场和高速魔角旋转等技术的发展,17O固体核磁共振谱学可以用于一系列简单氧化物和沸石等催化剂的结构研究.近年来,随着双旋转(DOR)、动态角旋转(DAS)、多量子魔角旋转(MQMAS)以及卫星跃迁魔角旋转(STMAS)等新技术的发展,能够消除二阶四极耦合作用带来的谱线展宽,显著提升谱图分辨率.而诸如交叉极化(CP)和旋转回波双共振(REDOR)技术,已经能用于探索氧与其它原子核空间相关方面的信息,成为研究催化剂相关作用的基础.本文综述了氧化物及相关催化剂17O固体核磁共振谱学研究的新进展.17O核磁共振谱学用于简单氧化物催化剂的结构研究,已经能够区分催化剂结构中不同晶相以及不同结晶学位点的氧物种,而1H→17O双共振实验也能用于选择表面羟基物种.对纳米氧化物结构的近期研究表明,17O核磁共振能将纳米氧化铈材料表面第1、2、3层、表面羟基、与氧空位靠近的氧物种与“体相”氧物种区分开来;此外借助17O-水和纳米氧化物作用,实现表面选择标记,为进一步探索催化剂结构和催化机理提供了新的可能.对于复合氧化物和负载催化剂,17O核磁共振谱学能够有效研究与催化性能最为相关的界面结构.在重要的氧化物催化材料沸石的研究中,17O核磁共振也发挥了巨大作用.借助高分辨率17O核磁共振方法,能够区分沸石中Si-O-Si和Si-O-Al物种,在一部分沸石中还能将不同结晶学位置的T-O-T’物种区分开来,并观测到天然沸石中违反Lowenstein规则,出现Al-O-Al物种的情况.借助双共振实验能够对与催化活性最为相关的B酸位Si-O(H)-Al结构和酸性进行研究,这一方法与探针分子相结合,已经能够对沸石和小分子的相互作用进行研究,提供吸附过程的重要信息.包括杂多酸和层状双氢氧化物在内的重要含氧催化材料也能够借助17O固体核磁共振进行局域结构和相互作用的研究.随着表面选择标记和动态核极化等选择表面研究的17O核磁共振技术的发展,我们能实现更为高效的表面结构的17O核磁共振观测,这一谱学方法将提供更多有关含氧催化剂和外来物种相互作用的信息,为研究氧化物催化剂及其催化应用提供新的策略.  相似文献   

9.
电催化剂的结构决定其性能.从微观层面研究表面结构与催化性能之间的内在联系和规律是设计和研制高活性、高稳定性、高选择性电催化剂的基础.本文以本研究组关于氢和氧的吸脱附、乙二醇氧化和CO2还原的研究结果为主,综述了电催化剂表面结构和性能调控方面的研究进展.给出面心立方晶体不同晶带上铂单晶电极的循环伏安特征,电催化性能和规律,在此基础上创建的金属纳米晶体表面结构控制和生长的电化学方法,以及对具有开放结构、高催化活性和高稳定性的Pt和Fe纳米晶催化剂的形状和表面结构控制合成.  相似文献   

10.
采用溶胶-凝胶法制备了纳米钙钛矿型复合氧化物SrTiO3催化剂,并用X射线粉末衍射、透射电子显微镜、原位电子自旋共振和程序升温表面反应等技术对催化剂进行了表征,测定了催化剂对甲烷氧化偶联(OCM)反应的催化性能.结果表明,与相同组成的常规SrTiO3催化剂相比,纳米SrTiO3催化剂具有较好的低温(~650℃)催化性能.通过增大Sr/Ti比可进一步优化纳米SrTiO3的催化性能.纳米SrTiO3催化剂表面的吸附氧物种和F中心均具有活化及催化甲烷分子生成C2烃产物的活性,但吸附氧物种易使OCM反应中间体和产物深度氧化,而F中心具有低温活化甲烷分子及高选择性生成C2烃产物的特性.纳米氧化物粒子因表面原子配位不饱和(配位数低),其表面存在较多的F中心。  相似文献   

11.
正金属-载体相互作用是负载型金属催化剂的基本结构特征,也是影响催化性能的关键因素。长期以来,对金属-载体相互作用机制的研究大都集中在氧化还原性氧化物负载的贵金属纳米粒子催化剂体系;但是由于金属粒子尺寸分布的不均匀性和氧化物载体表面的各向异性,很难从原子尺度上形成对催化活性位点和反应机理明确认知,也难以定量描述和理解金属-载体相互作用的化学本质~1。基于单原子催化剂研究金属-载体相互作用能够排除金属颗粒在金属-载体界面上尺寸、形貌和取向的影响,因此,单原子催化剂被  相似文献   

12.
杨丹  祝艳 《催化学报》2021,42(2):245-250,后插1-后插5
近年来,由有机配体保护的原子精确金属团簇在合成方面已取得了重要进展,其独特的原子结构对一些化学反应产生独特的催化效果.原子精确的团簇催化剂明显不同于纳米颗粒催化剂和单原子催化剂,是一种关联均相和多相的、原子数目确定、尺寸均一、结构精确的新型催化剂.从原子尺度上精确构筑团簇催化剂,探究亚纳米尺度的微观结构对催化性能的影响,为常规催化剂所未能解决的关键科学问题提供解决的机会,为在分子尺度上揭示催化作用机制以及准确关联催化剂结构与催化性能提供新的研究体系,具有重要的科学研究意义.本文设计和使用了三种结构精确的金团簇催化剂,即Au25(PPh3)10(SC2H4Ph)5Cl2,Au38(SC2H4Ph)24和Au25(SC2H4Ph)18,分别由二十面体结构的Au13单元通过中心顶点融合、面融合、体相融合形成的(简写为Auvf、Auff和Aubf),详细研究了这三个金团簇催化剂在二十面体Au13单元的结构融合过程中,其催化活性的演变规律.在催化吡咯烷与O2反应制备γ-丁内酰胺反应中,金团簇催化剂的催化活性顺序为Aubf>Auff>Auvf,表明这三个金团簇中Au13单元的结构随着点、面、体的融合,其催化活性随之增加.同时研究发现,对于同一个Au团簇催化剂,其表面硫醇配体的烷基链越短,其催化活性越高,这主要是由于短链硫醇分子的空间位阻较小,吡咯烷分子更容易进入催化剂的金表面,接触到活性位点,进行催化反应.实验表明,三个团簇金原子均带正电荷,正价金物种可能是催化吡咯烷与O2反应的催化活化物种.研究发现,Aubf团簇表面的活性位数目高于Auff和Auvf团簇的,因此Aubf的催化活性最高;同时,团簇表面配体的烷基链越短,其表面活性位数目也越多,这也进一步解释了表面硫醇配体的烷基链越短,其相应的金团簇催化剂的催化活性越高的原因.吡咯烷与O2在金团簇上反应的可能路径为O2在Au活性位上裂解的O原子和吡咯烷β-H转移至Au活性位的β-H反应脱水后形成亚胺,亚胺经过水解进一步氧化得到产物.这项研究将为在原子层次上调变金属团簇催化剂的结构进而改变其催化性能提供新的思路,对精准设计和构筑高效催化剂具有一定的科学指导意义.  相似文献   

13.
近年来,由有机配体保护的原子精确金属团簇在合成方面已取得了重要进展,其独特的原子结构对一些化学反应产生独特的催化效果.原子精确的团簇催化剂明显不同于纳米颗粒催化剂和单原子催化剂,是一种关联均相和多相的、原子数目确定、尺寸均一、结构精确的新型催化剂.从原子尺度上精确构筑团簇催化剂,探究亚纳米尺度的微观结构对催化性能的影响,为常规催化剂所未能解决的关键科学问题提供解决的机会,为在分子尺度上揭示催化作用机制以及准确关联催化剂结构与催化性能提供新的研究体系,具有重要的科学研究意义.本文设计和使用了三种结构精确的金团簇催化剂,即Au_(25)(PPh_3)_(10)(SC_2H_4Ph)_5Cl_2, Au_(38)(SC_2H_4Ph)_(24)和Au_(25)(SC_2H_4Ph)_(18),分别由二十面体结构的Au_(13)单元通过中心顶点融合、面融合、体相融合形成的(简写为Au_(vf)、Au_(ff)和Au_(bf)),详细研究了这三个金团簇催化剂在二十面体Au_(13)单元的结构融合过程中,其催化活性的演变规律.在催化吡咯烷与O_2反应制备γ-丁内酰胺反应中,金团簇催化剂的催化活性顺序为Au_(bf)Au_(ff)Au_(vf),表明这三个金团簇中Au_(13)单元的结构随着点、面、体的融合,其催化活性随之增加.同时研究发现,对于同一个Au团簇催化剂,其表面硫醇配体的烷基链越短,其催化活性越高,这主要是由于短链硫醇分子的空间位阻较小,吡咯烷分子更容易进入催化剂的金表面,接触到活性位点,进行催化反应.实验表明,三个团簇金原子均带正电荷,正价金物种可能是催化吡咯烷与O_2反应的催化活化物种.研究发现, Au_(bf)团簇表面的活性位数目高于Au_(ff)和Au_(vf)团簇的,因此Au_(bf)的催化活性最高;同时,团簇表面配体的烷基链越短,其表面活性位数目也越多,这也进一步解释了表面硫醇配体的烷基链越短,其相应的金团簇催化剂的催化活性越高的原因.吡咯烷与O_2在金团簇上反应的可能路径为O_2在Au活性位上裂解的O原子和吡咯烷β-H转移至Au活性位的β-H反应脱水后形成亚胺,亚胺经过水解进一步氧化得到产物.这项研究将为在原子层次上调变金属团簇催化剂的结构进而改变其催化性能提供新的思路,对精准设计和构筑高效催化剂具有一定的科学指导意义.  相似文献   

14.
金属与金属氧化物纳米晶作为常见催化材料(催化剂、助催化剂或载体),在过去的几十年中引起了人们极大的关注。近年来,纳米催化领域,尤其是纳米晶催化剂的可控制备技术,虽然取得了许多重要的进展,然而,真正理解纳米晶催化剂三性(活性、选择性和稳定性)与其微观结构上的内在联系一直以来都是具有挑战性的科学难题。怎样理解催化反应过程中纳米晶催化剂的活性位点?什么是影响其催化性能的关键因素?如何理解纳米催化的物理化学本质,认识其规律性,提高纳米晶催化剂活性、选择性和稳定性均是纳米催化领域有待解决的重要科学问题。我们课题组针对这些问题和挑战开展了纳米催化研究工作。本文总结了近年来课题组所取得的研究成果。  相似文献   

15.
单原子分散催化剂由于其独特的结构和性质,在催化研究中已展现出巨大的潜力,成为了催化研究的前沿领域.传统的催化剂制备方法(例如共沉积,浸渍法等)在单原子分散催化剂的制备中卓有成效,但不断涌现的新方法能够制备出传统方法不能制备的新型单原子分散催化剂.最近,光化学方法由于其步骤简单和制备条件温和的优点而引起了广泛关注.在之前的研究中我们揭示了光化学法制备单原子分散催化剂的分子机制.我们发现,紫外光照的作用在于将二氧化钛纳米片表面的乙二醇基激发生成乙二醇自由基,后者不仅有利于氯钯酸根中氯离子的脱除,还可通过Pd–O键将钯原子锚定在载体上,形成了独特的"钯-乙二醇-二氧化钛"的界面.根据对光化学法制备技术的理解,本文将光化学法拓展到其他二氧化钛体系,成功制备了基于(001)面暴露的锐钛矿纳米晶和商用二氧化钛P25的单原子分散钯催化剂.通过吸附和紫外光照,可以在室温下简单地制备单原子分散钯催化剂.扩展X射线吸收精细结构实验表明,紫外光照的作用是促进钯原子上氯离子的离去和更多Pd–O键的形成.与通过其它方法制备的催化剂相比,光化学法制备的两种Pd1/TiO2催化剂在苯乙烯的催化氢化反应中表现出更高的活性和稳定性.转化频率TOF为商用Pd/C催化剂的6倍.单原子分散催化剂为研究催化反应中复杂的界面效应提供了理想的模型体系.由于CO的催化氧化反应性能对金属活性中心的化学配位环境高度敏感,因此我们选择它作为模型反应以研究光化学法制备的单原子分散催化剂之间的差异.结果发现,两种载体制备的单原子分散钯催化剂都具有很好的催化CO氧化低温活性,373 K时CO转化率均可高达96%.其中,负载在(001)面暴露的锐钛矿纳米晶的催化剂在343 K时TOF高达6.7×10–3 s–1,比有文献报道的活性最高的Pd/La-修饰Al2O3催化剂在相同条件下高3.3倍,是目前Pd基催化剂在催化CO氧化反应中的活性最佳记录.这可能是由于二氧化钛的载体效应引起的.虽然两种催化剂的催化活性相当,但Pd/P25的表观活化能比Pd/TiO2(NC)高一倍左右.两种催化剂的金属都以单原子态分布,催化CO氧化反应的机制却可能完全不同.这说明单原子分散催化剂的性能与载体的表面性质密切相关.本文为单原子催化中载体的选择和原子尺度的界面调控提供了新的研究思路.  相似文献   

16.
单原子分散催化剂由于其独特的结构和性质,在催化研究中已展现出巨大的潜力,成为了催化研究的前沿领域.传统的催化剂制备方法(例如共沉积,浸渍法等)在单原子分散催化剂的制备中卓有成效,但不断涌现的新方法能够制备出传统方法不能制备的新型单原子分散催化剂.最近,光化学方法由于其步骤简单和制备条件温和的优点而引起了广泛关注.在之前的研究中我们揭示了光化学法制备单原子分散催化剂的分子机制.我们发现,紫外光照的作用在于将二氧化钛纳米片表面的乙二醇基激发生成乙二醇自由基,后者不仅有利于氯钯酸根中氯离子的脱除,还可通过Pd–O键将钯原子锚定在载体上,形成了独特的"钯-乙二醇-二氧化钛"的界面.根据对光化学法制备技术的理解,本文将光化学法拓展到其他二氧化钛体系,成功制备了基于(001)面暴露的锐钛矿纳米晶和商用二氧化钛P25的单原子分散钯催化剂.通过吸附和紫外光照,可以在室温下简单地制备单原子分散钯催化剂.扩展X射线吸收精细结构实验表明,紫外光照的作用是促进钯原子上氯离子的离去和更多Pd–O键的形成.与通过其它方法制备的催化剂相比,光化学法制备的两种Pd_1/TiO_2催化剂在苯乙烯的催化氢化反应中表现出更高的活性和稳定性.转化频率TOF为商用Pd/C催化剂的6倍.单原子分散催化剂为研究催化反应中复杂的界面效应提供了理想的模型体系.由于CO的催化氧化反应性能对金属活性中心的化学配位环境高度敏感,因此我们选择它作为模型反应以研究光化学法制备的单原子分散催化剂之间的差异.结果发现,两种载体制备的单原子分散钯催化剂都具有很好的催化CO氧化低温活性,373 K时CO转化率均可高达96%.其中,负载在(001)面暴露的锐钛矿纳米晶的催化剂在343 K时TOF高达6.7×10~(–3) s~(–1),比有文献报道的活性最高的Pd/La-修饰Al_2O_3催化剂在相同条件下高3.3倍,是目前Pd基催化剂在催化CO氧化反应中的活性最佳记录.这可能是由于二氧化钛的载体效应引起的.虽然两种催化剂的催化活性相当,但Pd/P25的表观活化能比Pd/TiO_2(NC)高一倍左右.两种催化剂的金属都以单原子态分布,催化CO氧化反应的机制却可能完全不同.这说明单原子分散催化剂的性能与载体的表面性质密切相关.本文为单原子催化中载体的选择和原子尺度的界面调控提供了新的研究思路.  相似文献   

17.
近年来,纳米金催化剂独特的催化性质,特别是其优异的低温催化氧化活性,引起了人们极大的研究热情.除低温选择氧化外,在精细化学品合成、大气污染物消除、氢能的转换和利用等领域也开发出了一系列有广泛应用前景的金催化反应.此外,体相金的化学惰性和纳米金的超高活性之间差异的"鸿沟"也引起了理论工作者浓厚兴趣,试图从原理上理解体相金和纳米金活性差异的根源.CO催化氧化是最具有代表性的研究金催化活性的化学反应,本文主要综述了近十多年来金催化CO氧化反应理论计算方面的研究工作.一般认为,CO在纳米金表面的吸附是CO氧化反应的初始步骤.密度泛函理论研究表明,CO在金表面的吸附强度主要与被吸附金原子的配位数有关:金配位数越低,CO的吸附能越强,部分研究结果表明两者之间存在近似的线性关系.我们研究发现,CO吸附强度也与被吸附金周围配位金原子的相对位置有关,其中位于正下方的配位金原子加强CO吸附,而位于侧位的配位金原子则弱化CO吸附,这显然削弱了CO吸附与金配位数线性关系的可靠性.理论研究表明,在纯金表面上O_2吸附强度一般很弱,只有在一些特殊结构的金团簇上才有较强的吸附,但在Au/Ti O_2界面及CeO_2表面上O_2吸附较强.金表面原子氧的吸附和金的表面结构有关.我们发现,原子氧倾向于在金的表面形成一种线性的O–Au–O结构以增加其稳定性.当金表面的氧覆盖度增大时,会形成一种金氧化物薄膜结构,其结构依赖于氧的化学势和金的表面结构.纳米金催化CO氧化反应机理可能因体系、载体等的差异而不同.大部分理论计算结果表明,在纯金表面上O_2很难直接解离形成原子氧,因此反应机理可能是吸附的CO先与O_2反应形成了一种CO–O_2中间体,然后解离形成CO_2.在Au/TiO_2和Au/Ce O_2催化剂上CO催化氧化机理争议很大,均有计算结果支持LH机理和M–v K机理.另外,根据实验上观察到了负载型纳米金能直接活化分子氧的结果,理论上也提出了分子氧先解离为原子氧再与CO反应的氧解离机理.针对如何解离分子氧问题,人们分别提出了低配位金模型、正方形金结构模型、Ti5c模型及Au/Ti5c模型等.我们也提出了一种独特的双直线O–Au–O模型来理解Au/TiO_2或Au/CeO_2界面解离活化分子氧.理论计算结果表明,低配位的金,金和载体之间的电荷转移,以及金所表现出的强相对论效应对于纳米金的活性影响很大.需要特别指出的是,金的强相对论效应有助于理解金表面的CO吸附与金配位的关系、金表面原子氧的吸附特性、金氧化物薄膜的结构和分子氧的活化等过程.我们认为,金的强相对论作用导致了体相金的化学惰性以及纳米金的活性,因此相对论效应的深入研究将有助于理解金催化CO氧化反应机理,从而有助于深层次理解纳米金催化活性来源.  相似文献   

18.
在金属单晶表面的化学吸附和催化行为的研究,对较有说服力地建立催化剂活性中心模型和建立催化机理具有重要意义。而在金属单晶表面上的化学吸附和催化转化的量子化学计算,则是这种与“真实”催化体系平行研究的一个组成部分。表面量子化学的理论处理,大体有两种近似模型,即从固体能带理论出发的半无限晶体模型与从分子轨道理论出发的  相似文献   

19.
李家欣  冯立纲 《电化学》2022,28(9):2214001
析氧反应(OER)是水分解中重要的半反应, 为提高其催化性能,开发高效非贵金属催化剂已成为当前的研究重点。铁镍(FeNi)基材料被认为是最好的预催化剂, 在催化过程中,它们的表面将转变成高价态金属氧化物或氢氧化物作为真正的活性物质。FeNi基预催化剂的结构和形貌在很大程度上影响了其催化性能, 因此, 优化和调整FeNi基预催化剂的结构和化学环境可以提高电催化性能。基于我们的研究工作, 我们撰写了FeNi基预催化剂的表面结构调控促进电化学析氧反应的研究进展。我们首先介绍了碱性OER的反应机理, 然后从杂原子掺杂、表面成分改性、选择性结构转变、表面化学状态调节、异质结构构建和载体效应等方面讨论了FeNi基预催化剂表面调控对析氧反应性能的影响。尽管在OER反应中FeNi都被认为转变成高价态的金属活性物质, Fe/Ni体系的表面结构、形貌和化学状态仍然能够显著影响其最终的催化性能, 即FeNi基预催化剂的性质会影响析氧反应的催化性能。通过精细设计并尽量提高Fe和Ni的协同作用将有利用提升氧析出的催化性能。我们希望本综述能够对FeNi基预催化剂的制备和表界面性质调控与电催化析氧反应性能的理解有所帮助。  相似文献   

20.
S.Roy Morrison 所著的《表面化学物理》(TheChemical Pysics of Surface)一书的中译本,已由北京大学出版社出版。这是一本对于新兴的表面科学的理论和实验方法的评论性专著。表面科学是介于表面物理和表面化学之间的一门边沿学科。它借助于近代最新物理方法,从物质的分子-原子水平上揭示固体表面的组成。结构和电子状态,进而深入地研究物质表面的特殊物理性质和化学反应的本质。这些不但使人们对于物质世界的理论认识提高到更高一级层次,而且在实践上为工业催化剂、半导体和材料科学等重大科技领域的新突破提供了可能性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号