首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
采用静电自组装法制备了复合材料K_8[Cu(H_2O)ZnW_(11)O_(39)]/PANI/ZrO_2,并采用IR、UV、XRD、N_2吸附-脱附、SEM、XPS、TG的检测手段对其进行了表征,且以制备的K_8[Cu(H_2O)ZnW_(11)O_(39)]/PANI/ZrO_2为催化剂,考察了K_8[Cu(H_2O)ZnW_(11)O_(39)]/PANI/ZrO_2的光催化活性,以二甲酚橙为模型,在紫外光照射条件下,确定最佳光催化条件为:二甲酚橙溶液的初始浓度为5 mg·L~(-1),二甲酚橙溶液的初始pH值为4,K_8[Cu(H_2O)ZnW_(11)O_(39)]/PANI/ZrO_2的用量为0.0200 g。最佳条件下,二甲酚橙溶液的脱色率可达93.72%。  相似文献   

2.
采用直接合成法制备K_8[Zn(H_2O)Mn W_(11)O_(39)],以(NH_4)_2S_2O_8为氧化剂,通过化学氧化法将聚苯胺包覆在纳米Ti O_2颗粒表面制得PANI/Ti O_2,然后运用静电自组装法将K_8[Zn(H_2O)Mn W_(11)O_(39)]与PANI/Ti O_2复合成K_8[Zn(H_2O)Mn W_(11)O_(39)]/PANI/Ti O_2复合材料。运用IR、UV、XRD、XPS、SEM、N2吸附-脱附等分析方法对K_8[Zn(H_2O)Mn W_(11)O_(39)]/PANI/Ti O_2进行表征。利用K_8[Zn(H_2O)Mn W_(11)O_(39)]/PANI/Ti O_2为催化剂,研究其对孔雀石绿溶液的光催化降解性能。结果表明:紫外光照射下,孔雀石绿p H为2,浓度为20 mg/L,催化剂为10 mg时,脱色率可达93.66%。  相似文献   

3.
本文通过静电自主装法对K_8[Co(H_2O)W_(11)MnO_(39)]/PANI/ZrO_2复合材料进行制备。采用红外、紫外、XRD、SEM、EDS和氮气吸附表征手段对合成的K_8[Co(H_2O)W_(11)MnO_(39)]/PANI/ZrO_2复合材料进行表征,并且研究了K_8[Co(H_2O)W_(11)MnO_(39)]/PANI/ZrO_2复合材料对龙胆紫染料的光催化性能,探讨了催化剂用量、pH、染料初始浓度和不同催化剂对光降解效率的影响,并且考察了重复回收效果。结果表明:龙胆紫溶液初始浓度为2mg·L~(-1),pH=2,催化剂用量为0.15g,紫外光照200min时脱色率可达94.8%,且重复利用第三次后脱色率仍达80.7%。  相似文献   

4.
采用静电自组装法制备了K_8[Co(H_2O)CdW_(11)O_(39)]/PANI/MnO_2,并利用IR、UV-vis、XRD、N_2吸附、SEM和XPS等表征手段对其进行分析,结果表明:三元复合材料被成功合成,Keggin结构完整.光催化实验中,通过研究影响脱色率的因素,探讨了催化剂降解刚果红的最佳反应条件,150min内,刚果红的脱色率可达87.23%.重复实验表明,K_8[Co(H_2O)CdW_(11)O_(39)]/PANI/MnO_2具有良好的稳定性和重复使用性.在光催化领域,该三元复合材料表现出优异的应用价值和研究潜力.  相似文献   

5.
本文采用直接合成法合成了K_7[Cu(H_2O)W_(11)AlO_(39)]/PANI/V_2O_5,又采用化学氧化法制得了PANI/V_2O_5,然后通过静电自组装法制得新的复合材料K_7[Cu(H_2O)W_(11)AlO_(39)]/PANI/V_2O_5/PANI/V_2O_5。并采用XRD、氮气吸附、FT-IR、SEM、UV、XPS手段进行表征。实验结果表明:K_7[Cu(H_2O)W_(11)AlO_(39)]/PANI/V_2O_5已与PANI/V_2O_5复合,并且保持杂多酸原有Keggin结构。以K_7[Cu(H_2O)W_(11)AlO_(39)]/PANI/V_2O_5/PANI/V_2O_5为催化剂降解亚甲基蓝,考察其光催化活性。确定最佳反应条件:亚甲基蓝溶液初始浓度为12 mg/L、pH=2、催化剂K_7[Cu(H_2O)W_(11)AlO_(39)]/PANI/V_2O_5/PANI/V_2O_5的用量为0.02g。在最佳条件下,亚甲基蓝的脱色率最高可达92.9%。  相似文献   

6.
本文使用静电自组装法将PANI/ZnS与K_8[Ni(H_2O)CuW_(11)O_(39)](NiW_(11)Cu)复合为新的三元复合材料K_8[Ni(H_2O)CuW_(11)O_(39)]/PANI/ZnS(NiW_(11)Cu/PANI/ZnS)。运用FT-IR、UV、XRD、SEM-EDS、N_2吸附-解吸等分析方法表征NiW_(11)Cu/PANI/ZnS。以NiW_(11)Cu/PANI/ZnS为催化剂光催化降解甲基紫,考察其光催化性能。结果表明:当甲基紫pH为2,浓度为15 mg·L~(-1),NiW_(11)Cu/PANI/ZnS为10 mg时,甲基紫的降解率可达91.98%。  相似文献   

7.
采用化学氧化法制得K_8[CuW_(11)CdO_(40)]/PANI掺杂材料,并用IR、UV、XRD、EDS、SEM对所合成的掺杂材料进行了表征。并利用所合成K_8[CuW_(11)CdO_(40)]/PANI掺杂材料为催化剂,研究了对亚甲基蓝溶液光降解催化活性。通过实验确定了光降解的最佳条件为:亚甲基蓝溶液初始pH为2,亚甲基蓝溶液初始浓度为10mg·L~(-1),催化剂用量为0.08 g,在光照100 min,亚甲基蓝溶液的脱色率为98.11%。因此,K_8[CuW_(11)CdO_(40)]/PANI掺杂材料是一种很好的光降解催化剂。  相似文献   

8.
用离子交换法制备了LDH-[Cd(H_2O)W_(11)NiO_(39)]~(8-)复合材料,并利用IR,XRD,N_2吸附和脱附实验以及扫描电镜配合X-射线能量色谱仪(SEM-EDS)等方法对其结构和性质进行了表征.结果表明,[Cd(H_2O)W_(11)NiO_(39)]~(8-)杂多阴离子取代了黏土板层中的NO_3~-离子,并且仍然保留了Keggin结构.利用合成的复合材料LDH-[Cd(H_2O)W_(11)NiO_(39)]~(8-)作为催化剂,对亚甲基蓝进行了光催化降解实验,并确定了光降解反应的最佳反应条件.在最佳反应条件下,亚甲基蓝的脱色率可达97.11%.并将复合材料与杂多酸盐和黏土的光催化活性进行了比较,其光催化活性顺序为LDH-[Cd(H_2O)W_(11)NiO_(39)]~(8-)K_8[Cd(H_2O)W_(11)NiO_(39)]Zn_2Al黏土.因此,LDH-[Cd(H_2O)W_(11)NiO_(39)]~(8-)复合材料具有优异的光催化活性.  相似文献   

9.
采用静电自组装法制备出三元复合材料K8[Fe(H2O)W(11)MnO(39)]/PANI/TiO2.采用IR,UV,XRD,SEM,XPS和N2吸附-脱附的表征手段对K8[Fe(H2O)W(11)MnO(39)]/PANI/TiO2进行表征,并以龙胆紫为模型,在紫外光照射下,考察了K8[Fe(H2O)W(11)MnO(39)]/PANI/TiO2对龙胆紫染料的光催化性能,确定光催化最佳条件:龙胆紫溶液浓度为5mg/L,pH=3,K8[Fe(H2O)W11MnO39]/PANI/TiO2的用量为10mg,脱色率可达92.93%.  相似文献   

10.
采用化学氧化法将Keggin结构K8[CdNi(H2O)W11O39]掺杂到聚苯胺中制得K8[CdNi(H2O)W11O39]/PANI掺杂材料,并用UV,IR,XRD,SEM和EDM等测试方法对掺杂材料进行表征.并研究了所合成掺杂材料催化剂为对亚甲基蓝溶液光降解催化活性.通过控制不同的影响条件,寻找光降解的最适条件,实验结果表明:掺杂材料具有很高的催化活性,最适条件下,110min内对亚甲基蓝溶液的脱色率达到99%以上,因此,[CdNi(H2O)W11O39]/PANI掺杂材料是一种很好的光降解催化剂.  相似文献   

11.
本文运用静电自组装法合成了一种新型三元复合材料K8[Fe(H2O)W11MnO39]/PANI/V2O5,并采用IR、UV、XRD、XPS、SEM、氮气吸附等方法对其进行表征;然后,以龙胆紫为有机污染物进行光催化实验,对此三元复合催化剂的降解性能进行研究。结果表明:K8[Fe(H2O)W11MnO39]/PANI/V2O5已被成功复合,且仍然保持Keggin结构,稳定性能良好;在pH=2,龙胆紫C初=5 mg·L-1,此催化剂用量为5 mg的条件下,其脱色率高达93.09%。可见,此复合催化剂具有优异的研究潜力和实用价值。  相似文献   

12.
王静  单秋杰  陈伟 《合成化学》2016,24(7):587-591
采用离子交换法将杂多酸盐K8[Co(H2O)W11CuO39]镶嵌到Zn2Al粘土当中,制得层状材料LDH[Co(H2O)W11CuO398-(2),其结构经IR, XRD, SEM, EDS和N2吸附-脱附与孔径分析表征。并以2为光催化剂,研究其对孔雀石绿溶液光降解的催化活性,最佳实验条件为:孔雀石绿溶液的初始浓度为20 mg·L-1,初始pH为2, 2用量为0.08 g,脱色率98.32%。  相似文献   

13.
聚苯胺/H2W2O7层状复合材料的制备研究   总被引:1,自引:0,他引:1  
以层状钨基氧化物(H2W2O7)为无机主体, 用正庚胺改性后的正庚胺/H2W2O7复合物(HTT)为中间体, 通过离子交换、层间O2引发聚合等步骤成功制备了聚苯胺/H2W2O7层状复合材料(PANI/H2W2O7). X射线衍射、扫描电子显微镜、红外光谱及差热分析结果表明: 聚苯胺分子已成功地嵌入H2W2O7层间, 层状结构没被破坏, 层间距变至1.19 nm; 聚苯胺的嵌入还大大提高了材料的热稳定性. 讨论了无机主体与有机客体之间的相互作用、聚苯胺在层间的排布形式及苯胺和聚苯胺插入层间的反应机理.  相似文献   

14.
本文采用静电自组装法成功制备了三元复合材料K8[Mn(H2O)CrW11O39]/PANI/SnO2,并使用UV-vis、XRD、XPS、FT-IR、SEM-EDS和N2吸附-脱附等手段对其进行表征。并且通过光催化降解刚果红染料的实验,确定了反应的最佳条件为:刚果红溶液的初始浓度为10 mg·L-1,初始pH值为2,催化剂用量为0.002 g时,溶液脱色率可达98.1%。重复回收三次后,溶液脱色率仍达到88.1%。  相似文献   

15.
制备方法对负载型纳米ZrO2/Al2O3复合载体性能的影响   总被引:4,自引:0,他引:4  
李凝  罗来涛 《催化学报》2007,28(9):773-778
采用浸渍-沉淀法制备了负载型纳米ZrO2/Al2O3复合载体.采用X射线衍射、N2物理吸附、差示扫描量热(DSC)和程序升温脱附等技术考察了浸渍方式和干燥方法对复合载体的表面性能、热稳定性和晶相结构的影响.结果表明,ZrO2/Al2O3复合载体中没有生成ZrO2-Al2O3复合氧化物或固溶体,纳米ZrO2仅负载在Al2O3的表面.微波干燥法制备的ZrO2/Al2O3复合载体的比表面积(158.7 m2/g)较大,最可几孔径为19.4 nm,ZrO2的粒度为4.2 nm,晶相结构为四方相ZrO2.微波诱导作用使ZrO2/Al2O3复合载体表面产生了新的酸碱中心,微波干燥法制备的ZrO2/Al2O3复合载体具有较强的热稳定性,在873~1 073 K范围内DSC曲线没有出现吸热峰,而其它干燥方法制备的复合载体在903~1 023 K范围内出现了较明显的吸热峰,表明复合载体表面的部分四方相ZrO2转变为单斜相ZrO2(m-ZrO2).对超声波处理过的复合载体进行微波干燥能进一步提高纳米ZrO2与Al2O3之间的相互作用,纳米粒子的粒度(3.4 nm)更小,分布更均匀,但没有改变ZrO2的晶相结构.  相似文献   

16.
利用自组装方式制备了多酸-有机胺-二氧化钛复合催化剂K5Ni(H2O)PW11O39-APS-TiO2(APS为(C2H5O)3SiCH2CH2CH2NH2的简称),简称为TiO2-APS-PW11Ni,通过红外(IR),紫外漫反射(UV/DRS)对其组成和结构进行了表征.并利用该催化剂光降解染料污染物罗丹明B(RB)水溶液,与纳米TiO2催化剂光降解进行对比,结果表明,染料罗丹明B在复合催化剂作用下的催化效果明显优于TiO2光催化效果,计算得降解半衰期分别为:T1/2(复合催化剂)=6.5 min,T1/2(TiO2)=21.2 min.  相似文献   

17.
A 3D infinitely extended structural rare earth coordination compound with a formula of K3{[Sm(H2O)7]2Na[α-SiW11O39Sm(H2O)4]2}·14H2O has been synthesized by reaction of Sm2O3, HClO4, NaOH with α-K8SiW11O39·nH2O, and characterized by IR,UV spectra, ICP, TG-DTA, cyclic voltammetry, variable-temperature magnetic susceptibility and X-ray single-crystal diffraction.X-ray single-crystal diffraction indicates that the title compound crystallizes in a triclinic lattice, Pī space group, with a=1.2462(3) nm, b=1.2652(3) nm,c=1.8420(4) nm,α=87.45(3)°,β=79.91(3)°,γ=82.57(3)°,Z=1, R1=0.0778,wR2=0.1610.Structural analysis reveals that Sm3+(1) coordination cation has incorporated into the vacant site of [α-SiW11O39]8- entity,forming the [α-SiW11O39Sm(H2O)4]5- subunit.The two adjacent [α-SiW11O39Sm(H2O)4]5- subunits are combined with each other through two Sm(1)-O-W bridges accompanying the formation of dimmer structural unit [α-SiW11O39Sm(H2O)4]210- of the title compound.The neighboring dimmer structural units [α-SiW11O39Sm(H2O)4]210- are linked to form the 1D chainlike structure by means of two Sm3+(2) and a Na+(1) coordination cations.The K+(1) cations connect the 1D packing chains constructing the 2D netlike structure, and adjacent netlike layers are also grafted by K+(2) cations to build the novel 3D infinitely extended structure.The result of TG-DTA curves manifests that the decomposition temperature of the title polyanionic framework is 554℃.The cyclic voltammetry measurements show that the title polyanion has the two-step redox processes in aqueous solution with pH=3.1.Variable temperature magnetic susceptibility indicates the title compound obeys the Cruie-Weiss Law in the higher temperature range from 110 to 300 K, while in the lower temperature range from 2 to 110 K the comparatively strong antiferromagnetism interactions can be observed.  相似文献   

18.
微波增强H3PW12O40/TiO2光催化降解染料和水杨酸的研究   总被引:5,自引:4,他引:1  
以孔雀石绿为模型分子, 考察了微波无极灯的形状、微波功率和溶液初始浓度对光催化降解效果的影响. 并且在最佳微波反应条件下, 考察了通过溶胶-凝胶再结合程序升温水热法制备的复合材料H3PW12O40/TiO2对刚果红、酸性黑、酸性品红和水杨酸的光催化降解情况. 结果表明, 微波无极灯具有更好地增强H3PW12O40/TiO2光催化降解有机污染物的作用.  相似文献   

19.
将具有确定形态的聚苯胺(PANI)纳米线作为复合单元, 直接分散在SnSO4和H2SO4的混合溶液中, 通 过紫外光照射获得PANI纳米线/SnO2纳米颗粒复合材料. 对复合材料的形态和成分进行了分析, 发现二者 相互交织在一起且部分颗粒直接生长在纳米线上. 以罗丹明B溶液为目标降解污染物研究了复合材料在低 功率紫外灯下的光催化活性. 结果表明, PANI纳米线可以明显增强SnO2的光催化活性, 且增强效果与光照 复合时间呈规律性变化, 在最优复合时间下复合材料的光催化活性是纯SnO2的近3倍. 通过对能级结构与光催化反应过程的测试分析, 认为Z型异质结的形成促进了光生电子-空穴的分离, 进而增强了材料的光催化活性.  相似文献   

20.
过氧杂多阴离子型层柱化合物的合成、表征及催化活性   总被引:1,自引:0,他引:1  
通过离子交换法,将含Zr过渡金属离子1,3取代钨硅、钨磷过氧杂多酸盐嵌入Zn2Al类水滑石中,获得了层柱化合物,并用XRD,IR,UV等手段对产物的结构进行了表征.结果表明过氧杂多阴离子进入水滑石层间后,水滑石的层间距从0.92增大到1.47 nm,且过氧链没被破坏.层柱化合物在酯化反应中显示优良的催化性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号