首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 354 毫秒
1.
聚集诱导发光机理研究   总被引:5,自引:0,他引:5  
与传统荧光生色团聚集后导致荧光猝灭相反,有一类化合物在单分子状态下荧光微弱甚至观察不到荧光,而在聚集状态下荧光显著增强,这就是聚集诱导发光(AIE)现象。AIE现象独特的优越性使得众多研究组开发出越来越多的新AIE体系,其机理也被广泛而深入地研究。本文总结了目前为止已经提出的AIE机理,包括分子内旋转受限、分子内共平面、抑制光物理过程或光化学反应、非紧密堆积、形成J-聚集体以及形成特殊激基缔合物等;着重评述了目前研究最为全面、适用范围最广的分子内旋转受限机理。同时介绍了一些基于这些机理设计的新AIE体系。  相似文献   

2.
Aggregation‐caused quenching (ACQ) is a general phenomenon that is faced by traditional fluorescent polymers. Aggregation‐induced emission (AIE) is exactly opposite to ACQ. AIE molecules are almost nonemissive in their molecularly dissolved state, but they can be induced to show high fluorescence in the aggregated or solid state. Incorporation of AIE phenomenon into polymer design has yielded various polymers with AIE characteristics. In this review, the recent progress of AIE polymers for biological applications is summarized.

  相似文献   


3.
The research of photo-responsive materials, with changed absorption and emission under light stimulus, has drawn more and more attention due to their wide applications. However, most of them suffered from the notorious aggregation-caused quenching(ACQ) effect, which often led to the unconspicuous luminescent change in photo-responsive process. To solve this problem, the strategy of combining aggregation-induced emission(AIE) and photochromic properties was utilized, which largely enriched the phenomenon and application of photo-responsive materials. This short review summarized the recent progress of photo-responsive AIE materials with changed UV absorbance or PL phenomenon under UV-irradiation, including the types of molecular structures, internal mechanisms and the practical applications. Also, some outlooks were given on the further exploration of this field at the end of this paper.  相似文献   

4.
Aggregation-induced emission(AIE) active photochromic molecules have attracted growing attention for their versatile applications.Here we designed and synthesized five newly unsymmetrical photochromic diarylethene(DAE) dyads(BTE1-5) by connecting tetraphenylethene(TPE) and aromatic substituent via bithienylethene(BTE) bridge.The chemical structures of those compounds were identified by ^1H NMR,13C NMR and HRMS.The absorption and emission of these dyads were investigated by UV-vis and fluore scence spectroscopy,respectively.The results showed that all those compounds exhibited typically AIE or aggregation-induced emission enhancement(AIEE) characteristic.Particularly,when an aggregationcaused quenching(ACQ) fluorophore(triphenylamine) was grafted to the molecule,connecting with TPE via BTE-bridge,the ACQ phenomenon was dissipated and converted to an AIE luminophore,and those compounds exhibited photochromism upon irradiation with alternative UV and visible light.The solution or solid of those compounds showed distinctly fluorescence switching "ON" or "OFF" observation upon irradiation with alternative UV and visible light.It is interesting that BTE1 could be applied in recording and rewritable information storage,and the cyclization quantum yields could be affected by substituent significantly.  相似文献   

5.
聚集诱导发光分子的光电功能与器件应用   总被引:1,自引:0,他引:1  
光电功能分子通常以薄膜和聚集体的形式显示功能, 聚集诱导发光(AIE)分子体系的发现为解决固态下聚集诱导荧光猝灭(ACQ)难题提供了新的思路. 本文总结了近年来本课题组发展的一系列AIE 分子, 侧重介绍这些AIE 分子的光电功能与器件应用, 特别是在有机电致发光器件和有机激光方面的应用. AIE 材料显示非常高的电致发光效率, 在显示与白光器件方面潜力巨大. 在发展电泵有机激光方面, AIE 材料特点突出, 是最有前景的一类材料.  相似文献   

6.
In vivo fluorescent monitoring of physiological processes with high‐fidelity is essential in disease diagnosis and biological research, but faces extreme challenges due to aggregation‐caused quenching (ACQ) and short‐wavelength fluorescence. The development of high‐performance and long‐wavelength aggregation‐induced emission (AIE) fluorophores is in high demand for precise optical bioimaging. The chromophore quinoline‐malononitrile (QM) has recently emerged as a new class of AIE building block that possesses several notable features, such as red to near‐infrared (NIR) emission, high brightness, marked photostability, and good biocompatibility. In this minireview, we summarize some recent advances of our established AIE building block of QM, focusing on the AIE mechanism, regulation of emission wavelength and morphology, the facile scale‐up and fast preparation for AIE nanoparticles, as well as potential biomedical imaging applications.  相似文献   

7.
Aggregation‐caused quenching (ACQ), where excited‐state and/or ground‐state electronic structures are altered to exhibit an increased proclivity for non‐radiative decay for the aggregates, is largely responsible for the lack of fluorescence and phosphorescence in molecular solids in general. Here we show that ACQ could be effectively circumvented by constructing an aromatic system with a methylene‐linker, where the system exhibits typical aggregation‐induced emission (AIE) with long‐lived room‐temperature phosphorescence, since the tetrahedral structure in the solid state may significantly reduce strong intermolecular interactions contributing to ACQ.  相似文献   

8.
Fluorescent hyperbranched polymers (FHBPs), which combine the versatile fluorescent property with unique characteristics of hyperbranched architecture, are desirable candidates for stimulus responsive materials. This review demonstrates the structure and environment-dependent emission behaviors of a series of FHBPs. AEE active FHBPs showing opposite performance to ACQ effect are used to sensitively detect explosives and a superamplification effect is found. Specially designed FHBPs can complex with metal ions, leading to fluorescence turn-off due to complex quenching effect. The protonation of amino-containing FHBPs exhibits pH-dependent fluorescence responses to solution acidity. Some FHBPs containing responsive moieties are photo- and thermo-sensitive, and show potential applications as smart materials.  相似文献   

9.
聚集诱导发光(AIE)现象的发现为解决传统有机荧光分子在高浓度和聚集形态下存在的荧光猝灭问题提供了最佳方案,并实现了在光电器件、化学传感、生物成像和靶向治疗等众多领域的广泛应用。随着对AIE发光机理研究的不断深入,AIE分子体系得到了极大的扩展。其中,一类具有给体-受体结构的AIE分子能够显著降低分子能隙,使发光分子波长从可见光区(400~700 nm)延伸到近红外(NIR)区(700~1700 nm)。由于NIR发光分子在生物医学领域中的独特优势,其已成为目前AIE研究的热点。随着对NIR分子设计及应用的不断探索,附加不同功能且发光波长更长的AIE分子也被开发出来了,并实现了对生物体特定组织的NIR荧光成像、光声成像、光动力治疗和光热治疗等。本文总结了近年来具有AIE性能的NIR荧光分子的结构及其在生物医学领域的相关应用。  相似文献   

10.
In the field of optical sensors, small molecules responsive to metal cations are of current interest. Probes displaying aggregation-induced emission (AIE) can solve the problems due to the aggregation-caused quenching (ACQ) molecules, scarcely emissive as aggregates in aqueous media and in tissues. The addition of a metal cation to an AIE ligand dissolved in solution can cause a “turn-on” of the fluorescence emission. Half-cruciform-shaped molecules can be a winning strategy to build specific AIE probes. Herein, we report the synthesis and characterization of a novel L-shaped fluorophore containing a benzofuran core condensed with 3-hydroxy-2-naphthaldehyde crossed with a nitrobenzene moiety. The novel AIE probe produces a fast colorimetric and fluorescence response toward zinc (II) in both in neutral and basic conditions. Acting as a tridentate ligand, it produces a complex with enhanced and red-shifted emission in the DR/NIR spectral range. The AIE nature of both compounds was examined on the basis of X-ray crystallography and DFT analysis.  相似文献   

11.
The stimuli-responsive polymers with upper critical solution temperatures(UCST) are highly attractive for drug delivery applications. However, the phase transition process of UCST polymer is usually characterized by turbidity measurement and electron microscopy, which are significantly restricted by low sensitivity and static observation. In contrary, the fluorescence technique has significant advantages in terms of high sensitivity, easy operation, and dynamic observation. However, the conventional fluorophores suffer from the drawbacks of aggregation-caused quenching(ACQ) after being encapsulated by UCST polymers, which are not suitable for direct visualization of the phase transition process. To tackle this challenge, we herein developed a series of UCST polymers based on polyacrylamides decorated with bile acid and aggregation-induced emission(AIE)-active tetraphenylethene(TPE) groups, which can be used for direct fluorescence monitoring of the phase transition process. Moreover, the AIE-active UCST polymers can serve as drug carriers, which can not only monitor the drug release process under thermal stimuli, but also verify the drug release by fluorescence recovery after thermal stimuli. It is expected that the AIE-active UCST polymers with self-monitoring ability are promising for biomedical applications.  相似文献   

12.
In vivo fluorescent monitoring of physiological processes with high-fidelity is essential in disease diagnosis and biological research, but faces extreme challenges due to aggregation-caused quenching (ACQ) and short-wavelength fluorescence. The development of high-performance and long-wavelength aggregation-induced emission (AIE) fluorophores is in high demand for precise optical bioimaging. The chromophore quinoline-malononitrile (QM) has recently emerged as a new class of AIE building block that possesses several notable features, such as red to near-infrared (NIR) emission, high brightness, marked photostability, and good biocompatibility. In this minireview, we summarize some recent advances of our established AIE building block of QM, focusing on the AIE mechanism, regulation of emission wavelength and morphology, the facile scale-up and fast preparation for AIE nanoparticles, as well as potential biomedical imaging applications.  相似文献   

13.
Three meso‐ester boron dipyrromethene (BODIPY) dyes have been synthesized and functionalized with aggregation‐induced emission (AIE)‐active tetraphenylethene or triphenylethene moieties. It was found that functionalizing at the different positions of the BODIPY core resulted in the final dye having different emission properties in response to aggregation: from aggregation‐induced quenching (ACQ) to being AIE active. X‐ray crystallographic analysis was thus performed to provide an explanation for these differences.  相似文献   

14.
Photoactivatable (caged) fluorophores are widely used in chemistry, materials, and biology. However, the development of such molecules exhibiting photoactivable solid‐state fluorescence is still challenging due to the aggregation‐caused quenching (ACQ) effect of most fluorophores in their aggregate or solid states. In this work, we developed caged salicylaldehyde hydrazone derivatives, which are of aggregation‐induced emission (AIE) characteristics upon light irradiation, as efficient photoactivatable solid‐state fluorophores. These compounds displayed multiple‐color emissions and ratiometric (photochromic) fluorescence switches upon wavelength‐selective photoactivation, and were successfully applied for photopatterning and photoactivatable cell imaging in a multiple‐color and stepwise manner.  相似文献   

15.
Nonconventional luminogens without classic conjugated structures have drawn increasing interests owing to their fundamental importance and promising applications. These luminogens generally bear such subgroups as tertiary amine, C = C, C≡N, C = O, OH, ether, and imide. The emission mechanism, however, remains under debate. Different assumptions like oxidation or acidification of tertiary amines, aggregation of C = O groups, as well as clustering and electron cloud overlap are proposed. Unlike concentration quenching and aggregation-caused quenching (ACQ) that are normally observed in traditional luminogens, many of these unorthodox luminogens exhibit unique aggregation-induced emission (AIE) characteristics, regardless of their molecular architectures. This review summarizes varying unorthodox luminogens with AIE features, aiming to outline the recent advances in this exciting area, with focus on the macromolecular systems. In light of the reported results, clustering-triggered emission mechanism, namely clustering of diverse subgroups with subsequent electron cloud overlap and conformation rigidification can well rationalize the photophysical behaviors of most systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 560–574  相似文献   

16.
Nowadays numerous thermally activated delayed fluorescence (TADF) polymers have been developed for PLEDs to realize high device performance and tunable emission colors. However, they often possess a strong concentration dependence on their luminescence including aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE). Herein, we first report a nearly concentration-independent TADF polymer based on the strategy of polymerized TADF small molecules. It is found that when a donor-acceptor-donor (D-A-D) type TADF small molecule is polymerized through its long-axis direction, the triplet state is distributed along the polymeric backbone to effectively suppress the unwanted concentration quenching. Unlike the short-axis one with an ACQ effect, the photoluminescent quantum yield (PLQY) of the resultant long-axis polymer remains almost unchanged with the increasing doping concentration. Accordingly, a promising external quantum efficiency (EQE) up to 20 % is successfully achieved in a whole doping control window of 5–100 wt. %.  相似文献   

17.
设计合成了具有聚集诱导发光增强活性(AEE)的含五苯基吡咯的甲基丙烯酸酯单体M-PPP,并通过自由基聚合制备了系列均聚物及不同五苯基吡咯侧基含量的聚甲基丙烯酸酯共聚物.所制备的均聚物P与共聚物CP在THF/H_2O体系中均具有AEE特性,在水含量大于20%时荧光开始增加,大于80%时荧光快速增加,95%时相对荧光强度达到最大;单体M-PPP则在水含量低于70%时荧光强度略有降低,随后迅速增加,95%后荧光强度下降.五苯基吡咯侧基含量较高的共聚物表现出更好的AEE特性.进一步的研究发现,共聚物CP在THF/H_2O混合溶液中能够对赖氨酸产生荧光点亮型响应.  相似文献   

18.
以“自稳定沉淀聚合”制备的聚马来酸酐-醋酸乙烯酯线性交替共聚物(PMV)为原料,利用水热法制得3种新型非共轭聚集诱导发光(AIE)聚合物.通过荧光光谱、紫外-可见光光谱、傅里叶变换红外光谱(FTIR)、X射线光电子能谱分析(XPS)等表征方法,研究了3种聚合物的荧光和结构特性,并考察了其在Fe3+检测的应用.实验结果表明:3种PMV衍生物均具有AIE性质,随着水热时间的延长,聚合物的发光颜色从蓝色红移至黄色,且水热1 h所得产物固体的绝对量子产率最高,可达17.05%;所得非共轭AIE聚合物可用于Fe3+检测,当Fe3+浓度为5~200μmol/L时,猝灭效率与Fe3+浓度符合线性关系,调整确定系数为0.9922,最低检测限可低至1.22μmol/L.  相似文献   

19.
Aggregation‐induced emission (AIE) is commonly observed for propeller‐like luminogens with aromatic rotors and stators. Herein, we report that a coumarin derivative containing a seven‐membered aliphatic ring (CD‐7) but no rotors showed typical AIE characteristics, whereas its analogue with a five‐membered aliphatic ring (CD‐5) exhibited an opposite aggregation‐caused quenching (ACQ) effect. Experimental and theoretical results revealed that a large aliphatic ring in CD‐7 weakens structural rigidity and promotes out‐of‐plane twisting of the molecular backbone to drastically accelerate nonradiative excited‐state decay, thus resulting in poor emission in solution. The restriction of twisting motion in aggregates blocks the nonradiative decay channels and enables CD‐7 to fluoresce strongly. The results also show that AIE is a general phenomenon and not peculiar to propeller‐like molecules. The AIE and ACQ effects can be switched readily by the modulation of molecular rigidity.  相似文献   

20.
Bimodal molecular probes combining nuclear magnetic resonance (NMR) and fluorescence have been widely studied in basic science, as well as clinical research. The investigation of spin phenomena holds promise to broaden the scope of available probes allowing deeper insights into physiological processes. Herein, a class of molecules with a bimodal character with respect to fluorescence and nuclear spin singlet states is introduced. Singlet states are NMR silent but can be probed indirectly. Symmetric, perdeuterated molecules, in which the singlet states can be populated by vanishingly small electron-mediated couplings (below 1 Hz) are reported. The lifetimes of these states are an order of magnitude longer than the longitudinal relaxation times and up to four minutes at 7 T. Moreover, these molecules show either aggregation induced emission (AIE) or aggregation caused quenching (ACQ) with respect to their fluorescence. In the latter case, the existence of excited dimers, which are proposed to use in a switchable manner in combination with the quenching of nuclear spin singlet states, is observed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号