首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2005,17(23):2182-2189
An electrochemical DNA biosensor was fabricated by immobilizing DNA probe on aluminum ion films that were electrodeposited on the surface of the stearic acid‐modified carbon paste electrode (CPE). DNA immobilization and hybridization were characterized with cyclic voltammetry (CV) by using methylene blue (MB) as indicator. MB has a couple of well‐defined voltammetric redox peaks at the CPE. The currents of redox peaks of MB decreased after depositing aluminum ion films on the CPE (Al(III)/CPE) and increased dramatically after immobilizing DNA probe (ssDNA/Al(III)/CPE). Hybridization of DNA probe led to a marked decrease of the peak currents of MB, which can be used to detect the target single‐stranded DNA. The conditions for the preparation of Al(III)/CPE, and DNA immobilization and hybridization were optimized. The specific sequences related to bar transgene in the transgenic corn and the PCR amplification of CP4 epsps gene from the sample of transgenic roundup ready soybean were detected by differential pulse voltammetry (DPV) with this new electrochemical DNA biosensor. The difference between the peak currents of MB at ssDNA/Al(III)/CPE and that at hybridization DNA modified electrode (dsDNA/Al(III)/CPE) was applied to determine the specific sequence related to the target bar gene with the dynamic range comprised between 1.0×10?7 mol/L to 1.0×10?4 mol/L. A detection limit of 2.25×10?8 mol/L of oligonucleotides can be estimated.  相似文献   

2.
In this work a partially reduced graphene oxide (p‐RGO) modified carbon ionic liquid electrode (CILE) was prepared as the platform to fabricate an electrochemical DNA sensor, which was used for the sensitive detection of target ssDNA sequence related to transgenic soybean A2704‐12 sequence. The CILE was fabricated by using 1‐butylpyridinium hexafluorophosphate as the binder and then p‐RGO was deposited on the surface of CILE by controlling the electroreduction conditions. NH2 modified ssDNA probe sequences were immobilized on the electrode surface via covalent bonds between the unreduced oxygen groups on the p‐RGO surface and the amine group at the 5′‐end of ssDNA, which was denoted as ssDNA/p‐RGO/CILE and further used to hybridize with the target ssDNA sequence. Methylene blue (MB) was used as electrochemical indicator to monitor the DNA hybridization. The reduction peak current of MB after hybridization was proportional to the concentration of target A2704‐12 ssDNA sequences in the range from 1.0×10?12 to 1.0×10?6 mol/L with a detection limit of 2.9×10?13 mol/L (3σ). The electrochemical DNA biosensor was further used for the detection of PCR products of transgenic soybean with satisfactory results.  相似文献   

3.
《Analytical letters》2012,45(6):1083-1095
Abstract

A sensitive electrochemical DNA biosensor based on nano-ZnO/chitosan composite matrix for DNA hybridization detection was developed. The Nano-ZnO was synthesized by the hydrothermal method and dispersed in chitosan, which was used to fabricate the modification of the glassy carbon electrode (GCE) surface. The ZnO/chitosan-modified electrode exhibited good biocompatibility and excellent electrochemical conductivity. The hybridization detection was monitored with differential pulse voltammetry (DPV) measurement using methylene blue (MB) as an indicator. The established biosensor can effectively discriminate complementary target sequence and two-base-mismatched sequence, with a detection limit of 1.09 × 10?11 mol L?1 of complementary target.  相似文献   

4.
ssDNA/十八酸修饰碳糊电极的制备及伏安法表征   总被引:12,自引:0,他引:12  
焦奎  张旭志  徐桂云  孙伟 《化学学报》2005,63(12):1100-1104
将石墨粉与十八酸在80 ℃下混合制成表面富含—COOH的基底碳糊电极(SA/CPE), 然后在活化剂N-羟基琥珀酰亚胺(NHS)和1-乙基-3-(3-二甲基氨丙基)碳二亚胺盐酸盐(EDC)存在下将ssDNA固定到电极表面制备ssDNA修饰电极(ssDNA/SA/CPE). 以亚甲基蓝(MB)为指示剂, 用循环伏安法对SA/CPE和ssDNA/SA/CPE进行电化学表征, 发现其在ssDNA/SA/CPE上较在SA/CPE上的氧化峰电流(ipa)和还原峰电流(ipc)分别增大1.9倍和1.7倍, 式电势(Ef)负移8 mV. 把ssDNA/SA/CPE放在互补ssDNA溶液中杂交后, MB的ipaipc较在SA/CPE上分别增大1.0倍和0.8倍, Ef负移18 mV. 用0.5 mol/L 的NaOH溶液冲洗使电极表面杂交而成的dsDNA变性洗脱, MB的伏安信号几乎与在ssDNA/SA/CPE上一样. ipc与SA/CPE上固定的ssDNA质量在1.0×10-7~5.0×10-6 g范围内成线性关系, 检测限为2.0×10-9 g (S/N=3). 这种既廉价又灵敏的电化学生物传感器有望在转基因植物产品检测研究中得到应用.  相似文献   

5.
An electrochemical DNA sensing film was constructed based on the multilayers comprising of poly‐L ‐lysine (pLys) and Au‐carbon nanotube (Au‐CNT) hybrid. A precursor film of mercaptopropionic acid (MPA) was firstly self‐assembled on the Au electrode surface. pLys and Au‐CNT hybrid layer‐by‐layer assembly films were fabricated by alternately immersing the MPA‐modified electrode into the pLys solution and Au‐CNT hybrid solution. Cyclic voltammetry was used to monitor the consecutive growth of the multilayer films by utilizing [Fe(CN)6]3?/4? and [Co(phen)3]3+/2+ as the redox indicators. The outer layer of the multilayer film was the positively charged pLys, on which the DNA probe was easily linked due to the strong electrostatic affinity. The hybridization detection of DNA was accomplished by using methylene blue (MB) as the indicator, which possesses different affinities to dsDNA and ssDNA. Differential pulse voltammetry was employed to record the signal response of MB and determine the amount of the target DNA sequence. The established biosensor has high sensitivity, a relatively wide linear range from 1.0×10?10 mol/L to 1.0×10?6 mol/L and the ability to discriminate the fully complementary target DNA from single or double base‐mismatched DNA. The sequence‐specific DNA related to phosphinothricin acetyltransferase gene from the transgenically modified plants was successfully detected.  相似文献   

6.
Gold nanoparticles (nano Au)/titanium dioxide (TiO2) hollow microsphere membranes were prepared on the carbon paste electrode (CPE) for enhancing the sensitivity of DNA hybridization detection. The immobilization of nano Au and TiO2 microsphere was investigated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The hybridization events were monitored with EIS using [Fe(CN)6]3?/4? as indicator. The sequence-specific DNA of the 35S promoter from cauliflower mosaic virus (CaMV35S) gene was detected with this DNA electrochemical sensor. The dynamic detection range was from 1.0×10?12 to 1.0×10?8 mol/L DNA and a detection limit of 2.3×10?13 mol/L could be obtained. The polymerase chain reaction (PCR) amplification of the terminator of nopaline synthase (NOS) gene from the real sample of a kind of transgenic soybean was also satisfactorily detected.  相似文献   

7.
A new approach for a simple electrochemical detection of PAT gene fragment is described. Poly(2,6-pyridinedicarboxylic acid) (PDC) modified glassy carbon electrode (GCE) was prepared by potential scan electropolymerization in an aqueous solution. Mg2 ions were incorporated by immer-sion of the modified electrode in 0.5 mol/L aqueous solution of MgCl2 to complete the preparation of a generic "activated" electrode ready for binding the probe DNA. The ssDNA was linked to the conduct-ing polymer by forming a bidentate complex between the carboxyl groups on the polymer and the phosphate groups of DNA via Mg2 . DNA immobilization and hybridization were characterized with dif-ferential pulse voltammetry (DPV) by using methylene blue (MB) as indicator and electrochemical im-pedance spectroscopy (EIS). The EIS was of higher sensitivity for DNA detection as compared with voltammetric methods in our strategy. The electron transfer resistance (Ret) of the electrode surface in EIS in [Fe(CN)6]3-/4- solution increased after the immobilization of the DNA probe on the Mg/PDC/GCE electrode. The hybridization of the DNA probe with complementary DNA (cDNA) made Ret increase further. The difference between the Ret at ssDNA/Mg/PDC/GCE and that at hybridization DNA modified electrode (dsDNA/Mg/PDC/GCE) was applied to determine the specific sequence related to the target PAT gene with the dynamic range comprised between 1.0 × 10-9 and 1.0 × 10_5 mol/L. A detection limit of 3.4 × 10-10 mol/L of oligonucleotides can be estimated.  相似文献   

8.
A mercaptoacetic acid (MAA)-modified cadmium sulfide (CdS) nanoparticle was synthesized in aqueous solution and used as an oligonucleotide label for the electrochemical detection of nopaline synthase (NOS) terminator gene sequence. The carboxyl groups on the surface of the CdS nanoparticle can be easily covalently linked with NH2-modified NOS oligonucleotide probe sequences. The target ssDNA sequence was fixed onto the electrode surface by covalently linking to a mercaptoethanol self-assembled gold electrode, and the DNA hybridization of target ssDNA with probe ssDNA was accomplished on the electrode surface. The CdS nanoparticles anchored on the hybrids were dissolved in the solution by the oxidation with HNO3 and further detected by a sensitive differential pulse anodic stripping voltammetric method. The detection results can be used for monitoring the hybridization, and the NOS target sequence was satisfactorily detected in the approximate range from 8.0 × 10−12 to 4.0 × 10−9 mol L−1 with a detection limit of 2.75 × 10−12 mol L−1 (3σ). The established method extended the nanoparticle-labeled electrochemical DNA analysis to genetically modified organisms (GMOs) specific sequence samples with higher sensitivity and selectivity.  相似文献   

9.
We present a new strategy for the label‐free electrochemical detection of DNA hybridization based on gold nanoparticles (AuNPs)/poly(neutral red) (PNR) modified electrode. Probe oligonucledotides with thiol groups at the 5‐end were covalently linked onto the surface of AuNPs/PNR modified electrode via S‐Au binding. The hybridization event was monitored by using differential pulse voltammetry (DPV) upon hybridization generates electrochemical changes at the PNR‐solution interface. A significant decrease in the peak current was observed upon hybridization of probe with complementary target ssDNA, whereas no obvious change was observed with noncomplementary target ssDNA. And the DNA sensor also showed a high selectivity for detecting one‐mismatched and three‐mismatched target ssDNA and a high sensitivity for detecting complementary target ssDNA, the detection limit is 4.2×10?12 M for complementary target ssDNA. In addition, the DNA biosensor showed an excellent reproducibility and stability under the DNA‐hybridization conditions.  相似文献   

10.
In this paper a graphene (GR) modified carbon ionic liquid electrode (CILE) was fabricated and used as the voltammetric sensor for the sensitive detection of catechol. Due to the specific physicochemical characteristics of GR such as high surface area, excellent conductivity and good electrochemical properties, the modified electrode exhibits rapid response and strong catalytic activity with high stability toward the electrochemical oxidation of catechol. A pair of well‐defined redox peaks appeared with the anodic and the cathodic peak potential located at 225 mV and 133 mV (vs.SCE) in pH 6.5 phosphate buffer solution, respectively. Electrochemical behaviors of catechol on the GR modified CILE were carefully investigated and the electrochemical parameters were calculated with the results of the electrode reaction standard rate constant (ks) as 1.24 s?1, the charge transfer coefficient (α) as 0.4 and the electron transfer number (n) as 2. Under the selected conditions the differential pulse voltammetric peak current increased linearly with the catechol concentrations in the range from 1.0 × 10‐7 to 7.0 × 10?4mol L‐1 with the detection limit as 3.0 × 10?8mol L‐1 (3σ). The proposed method was further applied to the synthetic waste water samples determination with satisfactory results  相似文献   

11.
《Electroanalysis》2006,18(15):1471-1478
In this paper, we present an electrochemical impedance‐based DNA biosensor by using a composite material of polypyrrole (PPy) and multiwalled carbon nanotubes (MWNTs) to modify glassy carbon electrode (GCE). The polymer film was electropolymerized onto GCE by cyclic voltammetry (CV) in the presence of carboxylic groups ended MWNTs (MWNTs‐COOH). Such electrode modification method is new for DNA hybridization sensor. Amino group ended single‐stranded DNA (NH2‐ssDNA) probe was linked onto the PPy/MWNTs‐COOH/GCE by using EDAC, a widely used water‐soluble carbodiimide for crosslinking amine and carboxylic acid group. The hybridization reaction of this ssDNA/PPy/MWNTs‐COOH/GCE resulted in a decreased impedance, which was attributed to the lower electronic transfer resistance of double‐stranded DNA than single‐stranded DNA. As the result of the PPy/MWNTs modification, the electrode obtained a good electronic transfer property and a large specific surface area. Consequently, the sensitivity and selectivity of this sensor for biosensing DNA hybridization were improved. Complementary DNA sequence as low as 5.0×10?12 mol L?1 can be detected without using hybridization marker or intercalator. Additionally, it was found that the electropolymerization scan rate was an important factor for DNA biosensor fabrication. It has been optimized at 20 mV s?1.  相似文献   

12.
In this work, a sensitive electrochemical DNA biosensor for the detection of sequence‐specific target DNA was reported. Firstly, CuO nanospindles (CuO NS) were immobilized on the surface of a glassy carbon electrode (GCE). Subsequently, gold nanoparticles (Au NPs) were introduced to the surface of CuO NS by the electrochemical deposition mode. Probe DNA with SH (HS‐DNA) at the 5′‐phosphate end was covalently immobilized on the surface of the Au NPs through Au? S bond. Scanning electron microscopy (SEM) was used to elucidate the morphology of the assembled film, and electrochemical impedance spectroscopy technique (EIS) was used to investigate the DNA sensor assembly process. Hybridization detection of DNA was performed with differential pulse voltammetry (DPV) and the methylene blue (MB) was hybridization indicator. Under the optimal conditions, the decline of reduction peak current of MB (ΔI) was linear with the logarithm of the concentration of complementary DNA from 1.0×10?13 to 1.0×10?6 mol·L?1 with a detection limit of 3.5×10?14 mol·L?1 (S/N=3). In addition, this DNA biosensor has good selectivity, and even can distinguish single‐mismatched target DNA.  相似文献   

13.
A highly sensitive electrochemical biosensor for the detection of trace amounts of 8‐azaguanine has been designed. Double stranded (ds)DNA molecules are immobilized onto a glassy carbon electrode surface with Langmuir–Blodgett technique. The adsorptive voltammetric behaviors of 8‐azaguanine at DNA‐modified electrode were explored by means of cyclic voltammetry and square wave voltammetry. Compared with bare glassy carbon electrode (GCE), the Langmuir–Blodgett film modified electrode can greatly improve the measuring sensitivity of 8‐azaguanine. Under the optimum experimental conditions, the Langmuir–Blodgett film modified electrode in pH 3.0 Britton–Robinson buffer solutions shows a linear voltammetric response in the range of 5.0×10?8 to 1.0×10?5 mol L?1 with detection limit 9.0×10?9 mol L?1. The method proposed was applied successfully for the determination of 8‐azaguanine in diluted human urine with wonderful satisfactory.  相似文献   

14.
A porous composite film was fabricated combining the advantages of multiwalled carbon nanotubes, CeO2 and chitosan. The synergistic effect of the film improved the immobilization of probe ssDNA. The loaded probe ssDNA was used for detection of CdSe quantum dots labeled target DNA. The DNA hybridization reaction was detected by differential pulse anodic stripping voltammetry of Cd2+ after the oxidative release of labeled CdSe quantum dots. The established DNA biosensor can discriminate different target sequences associated with 35S promoter of cauliflower mosaic virus gene with relatively wide linear range and low detection limit (2.4×10?13 mol/L).  相似文献   

15.
《Analytical letters》2012,45(16):2559-2570
A sensitive electrochemical DNA biosensor based on a mixed monolayer structure self-assembled at nanoporous gold (NPG) electrode surface was prepared for Escherichia coli (E. coli) detection. The NPG was fabricated on gold electrode, onto which thiolated oligonucleotides (SH-DNA) and mercaptohexanol (MCH) were covalently linked forming a mixed self-assembled monolayer (SAM). The hybridization between the SH-DNA/MCH modified biosensor and E. coli DNA was monitored with differential pulse voltammetry measurement using methylene blue (MB) as the hybridization indicator. The biosensor can detect 1 × 10?12 M DNA target and 50 cfu/μL E. coli without any nucleic acid amplification steps. The detection limit was lowered to 50 cfu/mL after 5.0 h of incubation.  相似文献   

16.
The remarkable synergistic effects of the zinc oxide (ZnO) nanoparticles and multi-walled carbon nanotubes (MWNTs) were developed for the ssDNA probe immobilization and fabrication of the electrochemical DNA biosensor. The ZnO/MWNTs/chitosan nanocomposite membrane-modified glassy carbon electrode (ZnO/MWNTs/CHIT/GCE) was fabricated and the ssDNA probes were immobilized on the modified electrode surface. The preparation method is quite simple and inexpensive. The hybridization events were monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as an indicator. As compared with previous MWNTs-based DNA biosensors, this composite matrix combined the attractive biocompatibility of ZnO nanoparticles with the excellent electron-transfer ability of MWNTs and fine membrane-forming ability of CHIT increased the DNA attachment quantity and complementary DNA detection sensitivity. The approach described here can effectively discriminate complementary DNA sequence, noncomplementary sequence, single-base mismatched sequence and double-base mismatched sequence related to phosphinothricin acetyltransferase (PAT) gene in transgenic corn. Under optimal conditions, the dynamic detection range of the sensor to PAT gene complementary target sequence was from 1.0 × 10−11 to 1.0 × 10−6 mol/L with the detection limit of 2.8 × 10−12 mol/L. The polymerase chain reaction (PCR) amplification of nopaline synthase (NOS) gene from the real sample of one kind of transgenic soybeans was also satisfactorily detected with this electrochemical DNA biosensor, suggesting that the ZnO/MWNTs/CHIT nanocomposite hold great promises for sensitive electrochemical biosensor applications.  相似文献   

17.
In this paper, we report a new PNA biosensor for electrochemical detection of point mutation or single nucleotide polymorphism (SNP) in p53 gene corresponding oligonucleotide based on PNA/ds-DNA triplex formation following hybridization of PNA probe with double-stranded DNA (ds-DNA) sample without denaturing the ds-DNA into single-stranded DNA (ss-DNA). As p53 gene is mutated in many human tumors, this research is useful for cancer therapy and genomic study. In this approach, methylene blue (MB) is used for electrochemical signal generation and the interaction between MB and oligonucleotides is studied by differential pulse voltammety (DPV). Probe-modified electrode is prepared by self-assembled monolayer (SAM) formation of thiolated PNA molecules on the surface of Au electrode. A significant increase in the reduction signal of MB following hybridization of the probe with the complementary double-stranded oligonucleotide (ds-oligonucleotide) confirms the function of the biosensor. The selectivity of the PNA sensor is investigated by non-complementary ds-oligonucleotides and the results support the ability of the sensor to detect single-base mismatch directly on ds-oligonucleotide. The influence of probe and ds-DNA concentrations on the effective discrimination against complementary sequence and point mutation is studied and the concentration of 10?6 M is selected as appropriate concentration. Diagnostic performance of the biosensor is described and the detection limit is found to be 4.15 × 10?12 M.  相似文献   

18.
Xiaoyu Cao 《Mikrochimica acta》2014,181(9-10):1133-1141
We have developed an ultra-sensitive electrochemical DNA biosensor by assembling probe ssDNA on a glassy carbon electrode modified with a composite made from molybdenum disulfide, graphene, chitosan and gold nanoparticles. A thiol-tagged DNA strand coupled to horseradish peroxidase conjugated to AuNP served as a tracer. The nanocomposite on the surface acts as relatively good electrical conductor for accelerating the electron transfer, while the enzyme tagged gold nanoparticles provide signal amplification. Hybridization with the target DNA was studied by measuring the electrochemical signal response of horseradish peroxidase using differential pulse voltammetry. The calibration plot is linear in the 5.0?×?10?14 and 5.0?×?10?9 M concentration range, and the limit of detection is 2.2?×?10?15 M. The biosensor displays high selectivity and can differentiate between single-base mismatched and three-base mismatched sequences of DNA. The approach is deemed to provide a sensitive and reliable tool for highly specific detection of DNA.
Figure
We have developed an ultra-sensitive electrochemical DNA biosensor by assembling probe (ssDNA) on a glassy carbon electrode modified with a composite made from molybdenum disulfide, graphene, chitosan and gold nanoparticles. The nanocomposite on the surface acts as relatively good electrical conductor for accelerating the electron transfer, while the enzyme tagged gold nanoparticles provide signal amplification. The biosensor displays high selectivity and can differentiate between single-base mismatched and three-base mismatched sequences of DNA  相似文献   

19.
In this work, self assembly of thiourea and gold nano-particle multilayer built up on a thiourea modified gold nanoparticles Au electrode, has been used as a platform for immobilization of activated ss-DNA. Two NH2 group of thiourea on a multilayer surface can interact with an activated phosphate group of non-labeled ss-DNA. Activated non-labeled ss-DNA was prepared using N-(3 dimethylaminopropyl)-N-ethyl-carbodiimide hydrochloride (EDC) and N-hydroxy-succinimide (NHS). The whole DNA biosensor fabrication process was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods with the use of ferricyanide as an electrochemical redox indicator. Methylene Blue (MB) was used as the electrochemical indicator for monitoring the hybridization reaction after hybridized with the target ssDNA and the reduction current of MB intercalation decreased with increasing the concentration of target DNA, ranging from 7.9 × 10–13 to 1.2 × 10–8 M with a very low detection limit of 3.8 × 10–13 M (S/N = 3).  相似文献   

20.
Palladium nanoparticles, in combination with multi‐walled carbon nanotubes (MWCNTs), were used to fabricate a sensitivity‐enhanced electrochemical DNA biosensor. MWCNTs and palladium nanoparticles were dispersed in Nafion, which were used to modify a glassy carbon electrode (GCE). Oligonucleotides with amino groups at the 5′ end were covalently linked onto carboxylic groups of MWCNTs on the electrode. The hybridization events were monitored by differential pulse voltammetry (DPV) measurement using methylene blue (MB) as an indicator. Due to the ability of carbon nanotubes to promote electron‐transfer and the high catalytic activities of palladium nanoparticles for electrochemical reaction of MB, the sensitivity of presented electrochemical DNA biosensors was remarkably improved. The detection limit of the method for target DNA was 1.2×10?13 M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号