首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new voltammetric sensor, Langmuir–Blodgett (LB) film of a p‐tert‐butylcalix[4]arene derivative modified glassy carbon electrode, was designed and successfully used in simultaneous determination of Tl+ and Pb2+ by square‐wave anodic stripping voltammetry. Under the optimum experimental conditions, this newly developed sensor reveal good linear response for Tl+ and Pb2+ in the concentration range of 3×10?8–4×10?6 mol L?1 and 2×10?7–2×10?5 mol L?1 respectively. The detect limits are 2×10?8 mol L?1 for Tl+ and 8×10?8 mol L?1 for Pb2+. Using proposed method, Tl+ and Pb2+ in environment samples were determined with satisfactory results.  相似文献   

2.
《Electroanalysis》2006,18(21):2115-2120
A new type of voltammetric sensor, Langmuir–Blodgett film of p‐tert‐butylthiacalix[4]arene modified glassy carbon electrode, was advanced and used for determining copper at trace levels by differential pulse stripping voltammetry. Calibration plot was found to be linear in the range of 2×10?8 M to 5×10?6 M; the detection limit was 2×10?9 M. Possible recognition mechanism was also discussed. From determination of Copper in real samples (river, lake and tap water) it can be concluded that the method is rapid, sensitive in determining of copper and can be used in the analysis of natural water samples.  相似文献   

3.
A new voltammetric sensor, based on a new p-tert-butylcalix[4]arene derivative (TCAD) modified glassy carbon electrode (GCE) using Langmuir–Blodgett (LB) technique, was designed successfully and used for recognition and determination of Ag+. The π?-?A isotherms suggested that the monolayer of TCAD can coordinate with Ag+ at the air–water surface. Under the optimum experimental conditions, this voltammetric sensor shows a linear voltammetric response for Ag+ in the range of 1.0?×?10?8?~?6.0?×?10?6?mol?L?1 with detection limit 5.0?×?10?9?mol?L?1. The high sensitivity, selectivity, and stability of this LB film modified electrode also demonstrate its practical application for a simple, rapid and economical determination of Ag+ in water sample.  相似文献   

4.
《Electroanalysis》2006,18(12):1202-1207
A new type of current sensor, Langmuir–Blodgett (LB) film of calixarene on the surface of glassy carbon electrode (GCE) was prepared for determination of mercury by anodic stripping voltammetry (ASV). An anodic stripping peak was obtained at 0.15 V (vs. SCE) by scanning the potential from ?0.6 to +0.6 V. Compared with a bare GCE, the LB film coated electrode greatly improves the sensitivity of measuring mercury ion. The fabricated electrode in a 0.1 M H2SO4+0.01 M HCl solution shows a linear voltammetric response in the range of 0.07–40 μg L?1 and detection limit of 0.04 μg L?1 (ca. 2×10?10 M). The high sensitivity, selectivity, and stability of this LB film modified electrode demonstrates its practical application for a simple, rapid and economical determination of Hg2+ in a water sample.  相似文献   

5.
A glassy carbon electrode coated the film of 4‐tert‐butyl‐1‐(ethoxycarbonylmethoxy)thiacalix[4]arene is designed for the determination of trace amounts of Hg2+. Compared with bare glassy carbon electrode, the modified electrode can improve the measuring sensitivity of Hg2+. Under the optimum experimental condition, the modified electrode in 0.1 mol L?1 H2SO4 + 0.01 mol L?1 KCl solution shows a linear voltammetric response in the range of 8.0 × 10?9 ~ 3.0 × 10?6 mol L?1 with detection limit 5.0 × 10?9 mol L?1 for Hg2+. The high sensitivity, selectivity, and stability of modified electrode also prove its practical application for a simple, rapid and economical determination of Hg2+ in water samples.  相似文献   

6.
A modified glassy carbon electrode was prepared as an electrochemical voltammetric sensor based on molecularly imprinted polymer film for tartrazine (TT) detection. The sensitive film was prepared by copolymerization of tartrazine and acrylamide on the carbon nanotube-modified glassy carbon electrode. The performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy in detail. Under the optimum conditions, two dynamic linear ranges of 8?×?10?8 to 1?×?10?6?mol?L?1 and 1?×?10?6 to 1?×?10?5?mol?L?1 were obtained, with a detection limit of 2.74?×?10?8?mol?L?1(S/N?=?3). This sensor was used successfully for tartrazine determination in beverages.  相似文献   

7.
A new type of voltammetric sensor, Langmuir‐Blodgett (LB) film of 5,11,17,23‐tetra‐tert‐butyl‐25,27‐di(3‐thiadiazole‐propanoxy)‐26,28‐dihydroxycalix[4]arene modified glassy carbon electrode (LBTZCA–GCE), was prepared. The electrochemical properties of LBTZCA–GCE were researched in detail and its recognizing mechanism for silver ion in aqueous solution was discussed. Using this voltammetric sensor, a new stripping voltammetric method for determining of Ag+ was erected with good sensitivity, selectivity, reproducibility and recovery. The detection limit was 8×10?9 M at accumulation time of 180 s. By this method, real samples (lake water, tap water and synthesis sample) were analyzed and the results obtained were well satisfactory.  相似文献   

8.
The voltammetric behavior of 3‐nitrofluoranthene and 3‐aminofluoranthene was investigated in mixed methanol‐water solutions by differential pulse voltammetry (DPV) at boron doped diamond thin‐film electrode (BDDE). Optimum conditions have been found for determination of 3‐nitrofluoranthene in the concentration range of 2×10?8–1×10?6 mol L?1, and for determination 3‐aminofluorathnene in the concentration range of 2×10?7–1×10?5 mol L?1, respectively. Limits of determination were 3×10?8 mol L?1 (3‐nitrofluoranthene) and 2×10?7 mol L?1 (3‐aminofluoranthene).  相似文献   

9.
This work demonstrates gold nanoparticles (AuNPs)/functionalized multiwalled carbon nanotubes (f‐MWCNT) composite film modified gold electrode via covalent‐bonding interaction self‐assembly technique for simultaneous determination of salsolinol (Sal) and uric Acid (UA) in the presence of high concentration of ascorbic acid (AA). In pH 7.0 PBS, the composite film modified electrode exhibits excellent voltammetric response for Sal and UA, while AA shows no voltammetric response. The oxidation peak current is linearly increased with concentrations of Sal from 0.24–11.76 μmol L?1 and of UA from 3.36–96.36 μmol L?1, respectively. The detection limits of Sal and UA is 3.2×10?8 mol L?1 and 1.7×10?7 mol L?1 , respectively.  相似文献   

10.
Glassy carbon electrode modified with DNA-functionalized single-walled carbon nanotube (DNA/SWCNT) and Nafion composite film was developed for the detection of methotrexate. The characteristics of the modified electrode were examined by transmission electron microscopy and cyclic voltammetry. Compared with a bare glassy carbon electrode and Nafion- and SWCNT/Nafion-modified electrodes, the DNA/SWCNT/Nafion-modified one exhibited the more superior ability of detecting methotrexate, including the higher sensitivity and the lower overpotentials, due to the synergetic DNA-functionalized SWCNT and Nafion. Also, the dependence of the current on pH, nature of buffer, instrumental parameters, accumulation time, and potential was investigated to optimize the experimental conditions in the determination of methotrexate. Under the selected conditions, the modified electrode in pH?=?2.78 Britton–Robinson buffer solutions showed a linear voltammetric response to methotrexate within the concentration range of 2.0?×?10?8–1.5?×?10?6?mol?L?1, with the detection limit of 8.0?×?10?9?mol?L?1. The method was also applied to detect methotrexate in medicinal tablets and spiked human blood serum samples.  相似文献   

11.
《Electroanalysis》2005,17(17):1511-1515
Differential pulse voltammetric determination of selenocystine (SeC) using selenium‐gold film modified glassy carbon electrode ((Se‐Au)/GC) is presented. In 0.10 mol?L?1 KNO3 (pH 3.20) solution, SeC yields a sensitive reduction peak at ?740 mV on (Se‐Au)/GC electrode. The peak current has a linear relationship with the concentration of SeC in the range of 5.0×10?8–7.0×10?4 mol?L?1, and a 3σ detection limit of SeC is 3.0×10?8 mol?L?1. The relative standard deviation of the reduction current at SeC concentration of 10?6 mol?L?1 is 3.88% (n=8) using the same electrode, and 4.19% when using three modified electrodes prepared at different times. The content of SeC in the selenium‐enriched yeast and selenium‐enriched tea is determined. The total selenium in ordinary or selenium‐enriched tea is determined by DAN fluorescence method. The results indicate that in selenium‐enriched yeast about 20% of total selenium is present as SeC and in selenium‐enriched tea SeC is the major form of selenoamino acids. The total selenium content in selenium‐enriched tea soup is 0.09 μgSe/g accounting by 7% compared with that in selenium‐enriched tea. Hence, only a little amount of selenium is utilized by drinking tea, and most selenium still stay in tealeaf. Uncertainty are 22.4% and 16.1% for determination of SeC in selenium‐enriched yeast and selenium‐enriched tea by differential pulse voltammetry (DPV) on (Se‐Au)/GC electrode, respectively.  相似文献   

12.
For determinations of organic compounds by adsorptive stripping voltammetry till now the same material of the electrode has been used for the accumulation and stripping steps. This paper describes a new protocol for extending the range of organic compounds, which can be determined by adsorptive stripping voltammetry. In the proposed procedure the accumulation step was performed on the electrode modified by a lead film, which assures adsorption of the studied species on the modified electrode and then the stripping step of the accumulated substance was performed on the support of the lead film electrode. As an example rifampicine was accumulated by adsorption at the lead film electrode while in the stripping step lead film and then the accumulated rifampicine were oxidized at a glassy carbon electrode. Using an acetate buffer as a supporting electrolyte a calibration graph for rifampicine in the range from 2.5×10?10 to 1×10?8 mol L?1 was obtained. The detection limit for rifampicine following 60 s accumulation time was equal to 9×10?11 mol L?1. The obtained detection limit was comparable or lower than reported previously for other stripping voltammetric procedures. The proposed procedure was applied to rifampicine determination in pharmaceutical preparation.  相似文献   

13.
A highly sensitive and stable amperometric tyrosinase biosensor has been developed based on multiwalled carbon nanotube (MWCNT) dispersed in mesoporous composite films of sol–gel‐derived titania and perfluorosulfonated ionomer (Nafion). Tyrosinase was immobilized within a thin film of MWCNT–titania–Nafion composite film coated on a glassy carbon electrode. Phenolic compounds were determined by the direct reduction of biocatalytically‐liberated quinone species at ?100 mV versus Ag/AgCl (3 M NaCl) without a mediator. The present tyrosinase biosensor showed good analytical performances in terms of response time, sensitivity, and stability compared to those obtained with other biosensors based on different sol–gel matrices. Due to the large pore size of the MWCNT–titania–Nafion composite, the present biosensor showed remarkably fast response time with less than 3 s. The present biosensor responds linearly to phenol from 1.0×10?7 M to 5.0×10?5 M with an excellent sensitivity of 417 mA/M and a detection limit of 9.5×10?8 M (S/N=3). The enzyme electrode retained 89% of its initial activity after 2 weeks of storage in 50 mM phosphate buffer at pH 7.0.  相似文献   

14.
In this work voltammetric techniques were explored for quantification of α‐Lipoic acid (ALA) using a pyrolytic graphite electrode modified with cobalt phthalocyanine. Cyclic voltammograms recorded in phosphate buffer solution containing 1×10?3 mol L?1 of ALA presented an oxidation peak located at +0.8 V vs. SCE. The modification of the electrode produced a 100 mV shift of the onset oxidation potential to less positive value and a substantial increase in the ALA oxidation current. Among the voltammetric techniques explored, differential pulse voltammetry showed the best performance for quantifications of the analyte in low concentrations. Limits of detection and quantification of ALA obtained corresponds to 3.4×10?9 mol L?1 and 1.2×10?8 mol L?1, respectively.  相似文献   

15.
The voltammetric behavior of paraquat was investigated at hydroxyapatite‐modified carbon paste electrode HAP‐CPE in K2SO4. A method was developed for the detection of the trace of this herbicide, based on their redox reaction. The reduction peaks of paraquat were observed around ?0.70 V and ?1.00 V (vs. SCE) in square‐wave voltammetry. Experimental conditions were optimized by varying the accumulation time, apatite loading and measuring solution pH. Calibration plots were linear under the optimized parameters over the herbicide's concentration range 8–200×10?7 mol L?1, with a detection and quantification limits about 1.5×10?8 mol L?1 and 6.4 10?8 mol L?1, respectively.  相似文献   

16.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result.  相似文献   

17.
Acyclovir is an antiviral effective drug active compound. A glassy carbon electrode (GCE) was modified with an electropolymerized film of p‐aminobenzene sulfonic acid (p‐ABSA) in phosphate buffer solution (PBS). The polymer film‐modified electrode was used to electrochemically detect acyclovir. Polymer film showed excellent electrocatalytic activity for the oxidation of acyclovir. The anodic peak potential value of the acyclovir at the poly(p‐ABSA) modified glassy carbon electrode was 950 mV obtained by DPV. A linear calibration curve for DPV analysis was constructed in the acyclovir concentration range 2×10?7–9×10?6 mol L?1. Limit of detection (LOD) and limit of quantification (LOQ) were obtained as 5.57×10?8 and 1.85×10?7 mol L?1 respectively. The proposed method exhibits good recovery and reproducibility.  相似文献   

18.
Single‐walled carbon nanotubes(SWCNTs) were dispersed into DMSO, and a SWCNTs‐film coated glassy carbon electrode was achieved via evaporating the solvent. The results indicated that CNT modified glassy carbon electrode exhibited efficiently electrocatalytic reduction for ranitidine and metronidazole with relatively high sensitivity, stability and life time. Under conditions of cyclic voltammetry, the potential for reduction of selected analytes is lowered by approximately 150 mV and current is enhanced significantly (7 times) in comparison to the bare glassy carbon electrode. The electrocatalytic behavior is further exploited as a sensitive detection scheme for these analytes determinations by hydrodynamic amperometry. Under optimized condition in amperometric method the concentration calibration range, detection limit and sensitivity were about, 0.1–200 μM, detection limit (S/N=3) 6.3×10?8 mol L?1 and sensitivity 40 nA/μM for metronidazole and 0.3–270 μM 7.73×10?8 mol L?1 and 25 nA/μM for ranitidine. In addition, the ability of the modified electrode for simultaneous determination of ranitidine and metronidazole was evaluated. The proposed method was successfully applied to ranitidine and metronidazole determination in tablets. The analytical performance of this sensor has been evaluated for detection of these analytes in serum as a real sample.  相似文献   

19.
We report a simple and sensitive voltammetric sensor for the determination of chlorpromazine (CPZ) based on Ni?Al layered double hydroxide (NiAlLDH) modified glassy carbon electrode (GCE). NiAlLDH was simply electrodeposited on GCE surface in a very short time. The response linear range was 1×10?3–1×10?9 mol L?1, with a detection limit of 1×10?9 mol L?1. The NiAlLDH film showed well defined and well separate peaks for dopamine, ascorbic acid, uric acid and CPZ in the same solution. The proposed electrode was used to measure the active pharmaceutical ingredient of CPZ tablet as a real sample.  相似文献   

20.
A highly sensitive and selective glucose biosensor has been developed based on immobilization of glucose oxidase within mesoporous carbon nanotube–titania–Nafion composite film coated on a platinized glassy carbon electrode. Synergistic electrocatalytic activity of carbon nanotubes and electrodeposited platinum nanoparticles on electrode surface resulted in an efficient reduction of hydrogen peroxide, allowing the sensitive and selective quantitation of glucose by the direct reduction of enzymatically‐liberated hydrogen peroxide at ?0.1 V versus Ag/AgCl (3 M NaCl) without a mediator. The present biosensor responded linearly to glucose in the wide concentration range from 5.0×10?5 to 5.0×10?3 M with a good sensitivity of 154 mA M?1cm?2. Due to the mesoporous nature of CNT–titania–Nafion composite film, the present biosensor exhibited very fast response time within 2 s. In addition, the present biosensor did not show any interference from large excess of ascorbic acid and uric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号