首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Completely stereoregular polycarbonate synthesis was achieved with the use of unsymmetric multichiral cobalt‐based complexes bearing a derived chiral BINOL and an appended 1,5,7‐triabicyclo[4.4.0] dec‐5‐ene as catalyst for the copolymerization of CO2 and aliphatic terminal epoxides at mild conditions. The (S,S,S)‐Co(III) complex 1c with sterically hindered substituent group is more stereoregular catalyst for the copolymerization of CO2 and racemic propylene oxide to afford a perfectly regioregular poly(propylene carbonate) (PPC), with >99% head‐to‐tail linkages, >99% carbonate linkages, and a Krel of 24.4 for the enchainment of (R)‐epoxide over (S)‐epoxide. The isotactic PPC exhibits an enhanced glass transition temperature of 47 °C, which is 10–12 °C higher than that of the corresponding irregular polycarbonate. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

2.
To improve the performance of PPC, aliphatic poly(carbonate‐ester)s were prepared in one‐step strategy from the terpolymerization of CO2, propylene oxide (PO), and l ‐lactide (L ‐LA) catalyzed by zinc glutarate. Consequently giving high‐molecular weight terpolymers (PPCLAs) in a very high yield (8450.8–9435.8 g mol?1 of Zn). The resulting terpolymers PPCLAs were characterized by 1H NMR, showing that PPCLAs had an almost alternating structure for the components of CO2, PO, and L‐LA. The influence of molecular weight and L‐LA content on the properties of PPCLAs was also investigated. Differential scanning calorimetry and thermogravimetric analysis (measurements revealed that the glass transition temperature (T g) and thermal decomposition temperature (T d) of PPCLAs are all much higher than those of PPC and increased with increasing molecular weight and L‐LA content. Tensile tests showed that the high mechanical properties of PPCLAs are due to the introduction of L‐LA into the copolymerization of CO2 and PO. Furthermore, PPCLA4 exhibits high degradability, and after 10 weeks, the weight loss increases up to 6.58%, which is significantly higher than that of PPC of 4.58%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Cobalt porphyrin complex (TPPCoIIIX) (TPP = 5, 10, 15, 20‐Tetraphenyl‐ porphyrin; X = halide) in combination with ionic organic ammonium salt was used for the regio‐specific copolymerization of propylene oxide and carbon dioxide. A turnover frequency of 188 h?1 was achieved after 5 h, and the byproduct propylene carbonate was successfully controlled to below 1%, where the obtained poly(propylene carbonate) (PPC) showed number average molecular weight (Mn) of 48 kg/mol, head‐to‐tail content of 93%, and carbonate linkage of over 99%. When the polymerization time was prolonged to 24 h, PPC with Mn over 115 kg/mol and head‐to‐tail linkage maintaining 90% was prepared, whose glass transition temperature reached 44.5 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5959–5967, 2008  相似文献   

4.
Zinc glutarates were synthesized from zinc oxides with varying purities via different stirring routes. The particle size and structure of these zinc glutarates were determined by wide‐angle X‐ray diffraction, transmission electron microscopy, and the laser particle size analyzer technique. The results demonstrated that the crystallinity and crystalline perfectness of zinc glutarate are the crucial factors that affect the catalytic activity for the copolymerization of carbon dioxide (CO2) and propylene oxide (PO). Additionally, the catalyst with a small particle size dramatically increased the yield of the copolymerization between CO2 and PO. High‐molecular‐weight and regular molecular structure poly(propylene carbonate)s (PPC)s were obtained from CO2 and PO with the synthesized zinc glutarates. Very high catalytic activity of 160.4 g polymer/g catalyst was afforded. The NMR technique revealed that the PPC copolymer exhibits an exact alternating copolymer structure. The relationships between the crystallinity and the particle size of catalyst with the catalytic activity are correlated and discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3579–3591, 2002  相似文献   

5.
Chiral chromium complexes of tetradentate N,N′‐disubstituted bis(aminophenoxide) (designated as Salan, a saturated version of Schiff‐base Salen ligand) in conjunction with an ionic quaternary ammonium salt can efficiently catalyze the copolymerization of CO2 with racemic propylene oxide (rac‐PO) at mild conditions to selectively afford completely alternating poly(propylene carbonate) (PPC) with ~ 95% head‐to‐tail linkages and moderate enantioselectivity. These new catalyst systems predominantly exceed the previously much‐studied SalenCr(III) systems in catalytic activity, polymer enantioselectivity, and stereochemistry control. The chiral diamine backbone, sterically hindered substitute groups on the aromatic rings, and the presence of sp3‐hydridized amino donors and its N,N′‐disubstituted groups in chiral SalanCr(III) complexes all play significant roles in controlling polymer stereochemistry and enantioselectivity. Furthermore, a relationship between polycarbonate enantioselectivity and its head‐to‐tail linkages in relation to regioselective ring‐opening of the epoxide was also discussed on the basis of stereochemical studies of PPCs derived from the copolymerization of CO2 with chiral PO at various conditions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6102–6113, 2008  相似文献   

6.
《中国化学》2018,36(4):299-305
The selective synthesis of polypropylene carbonate (PPC) and cyclic propylene carbonate (CPC) from coupling reaction of CO2 and propylene oxide (PO) is a long term pursuing target. Here we report that a temperature controllable porphyrin aluminum catalyst using 5,10,15,20‐tetra(1,2,3,4,5,6, 7,8‐octahydro‐1,4:5,8‐dimethanoanthracen‐9‐yl)porphyrin as ligand, once in conjunction with suitable onium salt, achieved single cycloaddition or copolymerization reaction. Only cycloaddition reaction happened at temperature above 75 °C to produce 100% CPC, whereas copolymerization became dominant to afford PPC with selectivity over 99% at 25 °C, and the obtained PPC showed over 99% carbonate linkage and 92% head‐to‐tail structure. Based on systematic analysis of the electronic and steric feature in the porphyrin ligand, it was found that the electronic feature of the substituent in porphyrin ligand was decisive for PPC selectivity, porphyrin ligand bearing strong electron‐donating substituents displayed a significantly reduced tolerance towards increased temperature with respect to PPC formation. Therefore, temperature‐responsive catalyst could be designed by suitable modification in porphyrin ligand, and such accurate synthesis of target product by one catalyst may create a useful and facile platform for selective PPC or CPC production.  相似文献   

7.
二氧化碳-环氧丙烷共聚物的链结构控制   总被引:3,自引:0,他引:3  
针对制约二氧化碳-环氧丙烷共聚物(PPC)规模化应用的玻璃化温度低的问题,提出了改进PPC链结构的3个方法,即提高共聚物的分子量、制备交联型PPC、合成区域规整结构PPC.通过研究链结构变化对PPC热性能和机械性能的影响,证明通过共聚物链结构的设计和控制,可以大幅度增强PPC的分子间作用力,从而提高了PPC的使用温度,改善了PPC的使用性能.  相似文献   

8.
Simple mixing of H3Co(CN)6 and ZnCl2 in methanol resulted in precipitates of [ZnCl]+2[HCo(CN)6]2?, constituting a new type of double metal cyanide (DMC) catalyst exhibiting a high performance in carbon dioxide (CO2)/propylene oxide (PO) copolymerization. High‐molecular‐weight poly(propylene carbonate‐co‐propylene oxide)s [poly(PC‐co‐PO)s] (Mn~40,000) were consistently obtained with high carbonate fractions (~60 mol %) and a high selectivity (>95%) with the new type of DMC catalyst. Conventional preparation of the DMC catalyst using K3Co(CN)6 and ZnCl2 required removing KCl through thorough washing and resulted in lower carbonate fractions (10–40 mol %), which depended on the washing conditions. Feeding hydrophobic diols such as 1,10‐decanediol as chain transfer agent preserved the high carbonate fraction (~60%) and enabled precise control of the molecular weight, including preparation of a low‐molecular‐weight poly(PC‐co‐PO)‐diol (Mn ~2000), which was a flowing viscous liquid with a low Tg (?30 °C) suitable for polyurethane applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4811–4818  相似文献   

9.
Recently, rare earth ternary coordination catalyst represented as Y(CCl3OO)3‐Glycerin‐ZnEt2 has been used for producing poly(propylene carbonate) (PPC, an alternating copolymer of carbon dioxide and propylene oxide) in industry scale, but its catalytic activity needs further improvement. One reason for the relatively low catalytic activity lied in that only 11.7% of active center was efficient due to possible embedding of active center in the heterogeneous catalyst. In this report, supporting strategy was developed, where Y(CCl3OO)3‐Glycerin‐ZnEt2 was supported on various inorganic oxides. Two supporting methods were carried out. One way was to mix Y(CCl3OO)3‐Glycerin with inorganic oxide first and then ZnEt2 was dropped to form the supported catalyst, and the other was to make Y(CCl3OO)3‐Glycerin‐ZnEt2 at first and then mixing with inorganic oxides. The former showed decreasing catalytic activity compared with corresponding unsupported rare earth ternary catalyst, while an improvement of 16–36% in catalytic activity was realized in the latter. PPC with an average number molecular weight (Mn) of over 100 kg/mol and carbonate unit (CU) content of higher than 96% was prepared by both supported catalysts. The catalytic activity of the supported catalyst depended significantly on the supports, which increased in the following order: α‐Al2O3 < MgO < ZnO ≈ SiO2 <γ‐Al2O3. γ‐Al2O3 was the best support for rare earth ternary catalyst, which showed a remarkable 36% increase in catalytic activity, corresponding to the utilization of 17% of active center. Although MgO supported catalyst gave only an 8% increase in catalytic activity, the Mn and CU content of PPC were raised to about 143 kg/mol and 99%, whereas the PPC from common rare earth ternary catalyst was about 108 kg/mol and 97%, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
A new aliphatic poly(propylene‐co‐γ‐butyrolactone carbonate) (PPCG) was successfully synthesized through the copolymerization of carbon dioxide, propylene oxide (PO), and γ‐butyrolactone (GBL). GBL was inserted into the backbone of PO–CO2. The glass transition of PPCG was as high as 16 °C, far higher than that (?1.5 °C) of poly(propylene carbonate) (PPC). The decomposition temperatures of PPCG and PPC were only slightly different. Because of the existence of the GBL ester unit, PPCG had stronger degradability than PPC in a pH 7.4 phosphate‐buffered solution. However, when the PO/GBL ratio increased beyond 5:2, the excessive amount of GBL was not added to the polymerization. PPCG and PPC microcapsules were prepared by the water‐in‐oil‐in‐water multiple‐emulsion method. Glucose was encapsulated. The PPCG microcapsules, about 2 μm in diameter, had smooth and spherical surfaces. The glucose release test revealed that the glucose release speed of the PPCG–glucose microcapsules was more than eight times faster than that of the PPC–glucose microcapsules in a pH 7.4 phosphate‐buffered solution. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2468–2475, 2005  相似文献   

11.
《化学:亚洲杂志》2017,12(24):3135-3140
A dinuclear Salph‐Al complex/bis(triphenylphosphine)iminium chloride catalyst system was synthesized and employed for cyclohexene oxide (CHO) and CO2 copolymerization. The catalyst system had an excellent selectivity of 99 % for carbonate linkages and the resultant poly(cyclohexene carbonate) (PCHC) had a high glass transition temperature (T g) of 123.8 °C and a thermal decomposition temperature (5 % weight loss; T d 5 %) of 265 °C. Furthermore, this catalyst system was active in the polymerization of phthalic anhydride (PA) and epoxides. Poly(CHO‐alt ‐PA) was completely alternating, and had improved thermal properties (T g=142.7 and T d 5 %=295 °C) compared with PCHC. The T g values of the polyesters could be adjusted by addition of PO to the CHO/PA reaction system. For the CHO/PO/PA terpolymerization, CHO and PO participated concurrently and proportionally in the chain growth and the obtained terpolyesters had tunable T g values from 62.8 to 142.7 °C depending on the CHO/PO feed ratio.  相似文献   

12.
The catalytic activities of tetraphenylporphinatoaluminum chloride (TPPAlCl) and its propylene oxide adduct (TPPAl(PO)2Cl) were investigated in detail together with a quarternary salt Et4NBr for the copolymerization of carbon dioxide and propylene oxide. In addition, for the components and starting raw materials of the catalyst systems, catalytic activities were examined for the copolymerization. The TPPAlCl catalyst delivered oligomers containing ether linkages to a large extent, regardless of its PO adduction. And cyclic propylene carbonate, as byproduct, was formed in a very small portion. Using the TPPAlCl coupled with Et4NBr as a catalyst system, the formation of ether linkages was reduced significantly in the copolymerization; however, the obtained oligomer still contained ether linkages of 25.0 mol % in the backbone. On the other hand, the formation of cyclic carbonate was increased to 22.4 mol % relative to the oligomer product. The results indicate that the salt, which was coupled with the TPPAlCl catalyst, plays a key role in reducing the formation of ether linkage in the oligomer and, however, in enhancing the formation of cyclic carbonate. Similar results were obtained for the copolymerization catalyzed by the TPPAl(PO)2Cl/Et4NBr system. That is, the formation of ether linkages was not restricted further by the PO adduction of the TPPAlCl component in the catalyst system. Only oligomers with a relatively high molecular weight were produced. This indicates that the PO adduction of the TPPAlCl component contributes highly to the initiation and propagation step in the oligomerization, consequently leading to a relatively high molecular weight oligomer. In contrast, the Et4NBr, as well as the Et2AlCl, produced only cyclic carbonate in a very low yield. Furthermore, tetraphenylporphine exhibited no catalytic activity, regardless of using together with Et4NBr. On the other hand, the Et2AlCl coupled with Et4NBr provided a low molecular weight oligomer having ether linkages of 92.3 mol % in addition to the cyclic carbonate. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3329–3336, 1999  相似文献   

13.
Oligo and poly(propylene ether carbonate)-polyols with molecular weights from 0.8 to over 50 kg/mol and with 60–92 mol % carbonate linkages were synthesized by chain transfer copolymerization of carbon dioxide (CO2) and propylene oxide (PO) mediated by zinc glutarate. Online-monitoring of the polymerization revealed that the CTA controlled copolymerization has an induction time which is resulting from reversible catalyst deactivation by the CTA. Latter is neutralized after the first monomer additions. The outcome of the chain transfer reaction is a function of the carbonate content, i. e. CO2 pressure, most likely on account of differences in mobility (diffusion) of the various polymers. Melt viscosities of poly(ether carbonate)diols with a carbonate content between 60 and 92 mol % are reported as function of the molecular weight, showing that the mobility is higher when the ether content is higher. The procedure of PO/CO2 catalytic chain copolymerization allows tailoring the glass temperature and viscosity.  相似文献   

14.
A crosslinking strategy was used to improve the thermal and mechanical performance of poly(propylene carbonate) (PPC): PPC bearing a small moiety of pendant C?C groups was synthesized by the terpolymerization of allyl glycidyl ether (AGE), propylene oxide (PO), and carbon dioxide (CO2). Almost no yield loss was found in comparison with that of the PO and CO2 copolymer when the concentration of AGE units in the terpolymer was less than 5 mol %. Once subjected to UV‐radiation crosslinking, the crosslinked PPC film showed an elastic modulus 1 order of magnitude higher than that of the uncrosslinked one. Moreover, crosslinked PPC showed hot‐set elongation at 65 °C of 17.2% and permanent deformation approaching 0, whereas they were 35.3 and 17.2% for uncrosslinked PPC, respectively. Therefore, the PPC application window was enlarged to a higher temperature zone by the crosslinking strategy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5329–5336, 2006  相似文献   

15.
Low‐molecular weight oligo(carbonate‐ether) diols are important raw materials for polyurethane formation, which with tunable carbonate unit content (CU) may endow new thermal and mechanical performances to polyurethane. Herein, facile synthesis of oligo(carbonate‐ether) diols with number average molecular weight (Mn) below 2000 g mol?1 and CU tunable between 40% and 75% are realized in high activity by immortal copolymerization of CO2/propylene oxide (PO) using zinc‐cobalt double metal cyanide complex (Zn‐Co‐DMCC) in the presence of sebacic acid (SA). Mn of the oligomer is in good linear relationship to the mole ratio of PO and SA (PO/SA) and hence can be precisely controlled by adjusting PO/SA. Besides, the molecular weight distribution is quite narrow due to the rapid reversible chain transfer in the immortal copolymerization. High pressure and low temperature are favorable for raising CU. In all the reactions, the weight fraction of propylene carbonate (WPC) can even be controlled as low as 2.0 wt %, and the catalytic activity of Zn‐Co‐DMCC is above 1.0 kgg?1 cat. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Cobalt(III) tetraphenylporphyrin chloride (TPPCoCl) was experimentally proved to be an active catalyst for poly(propylene carbonate) production. It was chosen as a model catalyst in the present work to investigate the initiation step of propylene oxide (PO)/CO2 copolymerization, which is supposed to be the ring opening of the epoxide. Ring‐opening intermediates ( 1 – 7 ) were detected by using 1H NMR spectroscopy. A first‐order reaction in TPPCoCl was determined. A combination of monometallic and bimetallic ring‐opening pathways is proposed according to kinetics experiments. Addition of onium salts (e.g., bis(triphenylphosphine)iminium chloride, PPNCl) efficiently promoted the PO ring‐opening rate. The existence of axial ligand exchange in the cobalt porphyrin complex in the presence of onium salts was suggested by analyzing collected 1H NMR spectra.  相似文献   

17.

High-molecular-weight polymers with different contents of propylene carbonate (PC), and trimethylene carbonate (TMC) units in the polymer chain were synthesized by the coordination anionic copolymerization of carbon dioxide, propylene oxide (PO), and TMC in supercritical carbon dioxide (scCO2). Zinc adipate (ZnAd) was used as a catalyst. The terpolymerization products were characterized by 1H and 13C NMR, IR spectroscopy, GPC, and DSC. The effect of the reaction conditions on the yield, composition, structure, and molecular weight and thermal characteristics of the terpolymers was studied. The phase behavior of the synthesized polymers and mixtures of polypropylene carbonate with polytrimethylene carbonate was examined.

  相似文献   

18.
Terpolymerizations of CO2, styrene oxide (SO), and epoxides with an electron‐donating group such as propylene oxide (PO) or cyclohexene oxide (CHO) were carried out by using Co(III)–salen complexes in the presence of an intra‐ or intermolecular nucleophilic cocatalyst. The resultant terpolymers have only one thermolysis peak and one glass transition temperature (Tg), which can be easily adjusted by controlling the proportion of styrene carbonate linkages. During the CO2/SO/PO terpolymerization, the monomer reactivity ratios (rSO = 0.18 and rPO = 2.25) evaluated by Fineman–Ross plot indicates a random distribution of the two kinds of carbonate units in the resultant polymer. Contrarily, the monomer reactivity ratios were found to be rSO = 0.48 and rCHO = 0.79 in the CO2/SO/CHO terpolymerization, indicating that an alternating nature of the two different carbonate units predominantly exists in the resultant polycarbonate. The regioselective ring opening of SO has a significant effect on the reactivities of both SO and CHO during the terpolymerization with CO2. The matched reactivity is contributed to the enhanced regioselective ring opening of SO, caused by the attack of the dissociating polymer carboxylate anion, bearing a cyclohexene carbonate end unit. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
Common CO2‐based biodegradable polycarbonates like poly(propylene carbonate) or poly(cyclohexene carbonate) are generally hydrophobic, leading to slow biodegradation rate and poor cell adhesion, which limit their applications in the biomedical field. Here hydrophilic polycarbonates were prepared by one‐pot terpolymerization of CO2, propylene oxide (PO), and 2‐((2‐(2‐(2‐methoxyethoxy)ethoxy)ethoxy)methyl)oxirane (ME3MO) using binary Salen Co(III)‐Cl/PPNCl catalyst system. The resultant terpolymers showed one glass transition temperature (Tg), which decreased with the increase of ME3MO units in the terpolymers (FME3MO). Water contact angles of the resultant terpolymers with FME3MO of 4.2?23.6% were 68?25°, while that of poly(propylene carbonate) was 90°, indicating that the terpolymers became hydrophlilic. Furthermore, the terpolymers with FME3MO more than 25.8% exhibited reversible and rapid thermo‐responsive property in water, and the lower critical solution temperature (LCST) was highly sensitive to FME3MO. In particular, aqueous solution of the terpolymer with FME3MO of 72.6% showed a LCST around 35.2 °C, close to body temperature, which was promising for biomedical applications, especially for in vivo applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2834–2840.  相似文献   

20.
A novel SalenCoIII (2,4‐dinitrophenoxy) (Salen = N,N'‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐cyclohexanediamino) and 1,10‐phenanthroline monohydrate catalyst system was designed and employed for the copolymerization of CO2 and propylene oxide (PO). The perfectly alternating copolymerization of CO2 and PO proceeds effectively under middle temperature and pressure to yield poly(propylene carbonate) with a high yield and a high number average molecular weight of polymer. The structure of polymer was characterized by the IR and NMR measurements. The perfectly alternating copolymer was confirmed. The MALDI‐TOF spectrum insinuates that the copolymerization of CO2 and PO was initiated by H2O. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号