首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
利用热重、固定床热解和红外光谱技术研究煤直接液化残渣的热解特性及热解产物分布、组成和性质,考察了热解回收油品的适用条件。结果表明,450℃~500℃下神华煤液化残渣(SHR)和胜利煤液化残渣(SLR)热解油产率分别约为32%和20%,450℃后升高温度对油产率影响不大,但会使热解油中沥青烯(A)含量增加。SHR的热解油主要是己烷可溶物组分(HS),与SHR中HS结构相似。但SLR的热解油中A组分含量接近50%。SHR中的HS组分在热解时的聚合并不明显;而SLR中的HS组分在热解过程中伴随明显的聚合,导致热解油中含有大量的沥青烯。在400℃~500℃,两种残渣中A均有向热解油转化的趋势,而且SLR中A组分表现出了较大的逸出能力。但从热解产物组成分布分析,A的逸出还是少量的,一部分分解产生油品,一部分与前沥青烯和四氢呋喃不溶物(THFIS)一起形成了半焦。  相似文献   

2.
废轮胎回转窑中试热解油的理化性质   总被引:12,自引:4,他引:12  
研究了回转窑中试反应器中废轮胎热解所得液体产物油的品质。热解反应在中温段(450℃~650℃)进行,油产率在500℃有最大值45.1%,此后随温度升高而呈下降趋势。对热解油的品质进行了考察,获取了热解油的完整实沸点蒸馏曲线。结果表明,热解油品质较轻,200℃以下轻馏分总量高达33%~40%,而且热解温度的升高也有助于增加轻馏分含量。对各馏分进一步的FT-IR分析显示,较高热解温度下热解油具有较强的芳香性,并可从谱图中识别出苯、萘及其烷基衍生物等芳香类物质。600 ℃和500 ℃热解油低馏分FT-IR分析结果体现了热解芳烃类物质生成的Diels-Alder反应途径。  相似文献   

3.
玉米芯快速热解油特性研究   总被引:1,自引:0,他引:1  
利用层析法对玉米芯快速热解油进行分析。结果表明,裂解温度对热解油产率及其族馏分构成的影响很大。通过气相色谱(GC)分析表明,脂肪族馏分碳数分布主要在C12~34,在烷烃碳数分布上,脂肪族馏分与柴油相当。并利用傅里叶红外光谱(FT-IR)、核磁共振氢谱(1H-NMR)分析了600℃下得到的热解油特征,表明玉米芯快速热解油作为燃料和高品位化学品原料来源具有潜在的发展前景。  相似文献   

4.
采用高频炉快速热解装置研究油浆的高温快速热解特性,考察了热解温度、氮气流量对气固相产物的组成和产率的影响。温度是影响气相产物产率的关键因素,气相产物主要为甲烷、氢气和乙烯,升高温度可提高甲烷和氢气的产率,而乙烯产率受高温下二次反应的影响在800℃到达最大值后逐渐降低,乙烷、丙烯产率较小且受二次反应的影响在700℃到达最大值后逐渐降低,温度高于800℃时会有少量乙炔生成且升温可提高乙炔产率。增加氮气流量可降低甲烷、氢气分压,缩短乙烯、丙烯等在高温区的停留时间,从而增加气相产物的产率。积炭产率随热解温度升高迅速增加,氮气流量的增加能够削弱二次反应从而降低积炭产率。  相似文献   

5.
以离子液体1-丁基-3-甲基咪唑氯([Bmim]Cl)和1-丁基-3甲基咪唑四氟化硼([Bmim]BF4)为催化剂,在微波加热作用下,研究了稻草和锯屑的热解。微波加热20 min,稻草和锯屑的生物油产率分别为38%和34%。考察了微波加热时间、微波功率和离子液体用量对生物质油产率的影响。当以相同的离子液体为催化剂时,稻草微波热解得到的生物质油产率大于锯屑的。生物油成分主要有糠醛、醋酸和1-羟基-2-丁酮等,其含量主要取决于生物质原料和加入的离子液体的类型。  相似文献   

6.
聚光太阳能加热昭通褐煤的气化试验研究   总被引:1,自引:0,他引:1  
以云南昭通褐煤为原料,在聚光太阳能气化炉内,分别对昭通褐煤热解、气化过程中热解温度、气化温度及蒸汽流量等工艺参数对产品煤气成分的影响规律进行了试验研究。结果表明:随热解温度升高,煤气中CO2含量逐渐减少,H2含量增加;在800℃以前CO和CH4含量随着温度的升高而增加,当温度高于800℃后其含量随温度的升高而降低。在蒸汽流量一定的条件下,随气化温度升高,煤气中CO2、H2的含量下降,CO含量上升;在一定的气化温度下,随蒸汽流量的增加,煤气中CO2、H2含量增加,CO含量下降。同时根据热解产物量,分别对热解煤气产率、热解效率、热解强度等进行了计算,并通过能量收支平衡计算,得出太阳能的转化率为38.24%。  相似文献   

7.
研究了KCl-ZnCl2熔融盐在400、500、600℃下对重质生物油再热解特性及产物分布的影响。结果表明,熔融盐提高了重质生物油热解的固体产率,同时使气体产率下降;对苯酚、甲基苯酚、乙基苯酚、对丙基苯酚等部分化合物具有较好的富集效果,尤其在400℃下甲基苯酚的相对含量从8.82%提升到了20.85%,而苯酚在600℃下相对含量从2.18%提升到了8.62%;在炭形成过程中,熔融盐使C元素含量降低,O元素含量提高,增大了孔隙的BET比表面积和总孔容积,促进了固体产物孔隙结构的形成,增大了孔隙的平均孔径。  相似文献   

8.
生物质热解油气化试验研究   总被引:14,自引:1,他引:14  
生物质是一种环境友好可再生资源,可以通过多种途径转化为液体燃料。生物质热解液化即是在缺氧状态下对生物质进行快速加热,然后再对热解产物进行快速冷凝,最后获得一种称为生物油的液体燃料的技术。该技术以及生物油的特点主要有:热解液化温度为500℃,远低于生物质热解气化所  相似文献   

9.
废轮胎热解石脑油馏分的组成分析   总被引:4,自引:4,他引:4  
研究了废轮胎在回转窑中试反应器中进行中温段(450 ℃~650 ℃)热解所得产物油中石脑油馏分(i.b.p.~200 ℃)的品质。对原始热解油进行实沸点蒸馏,石脑油馏分的收率随热解温度的升高而明显增加,在600 ℃取得最大值40.48%,之后又有所下降。采用GC和GC-MS对石脑油馏分的组成进行了分析。结果表明,热解石脑油具有很强的芳香性,而且芳烃含量随热解温度的升高而持续增加,热解温度在550 ℃以上的石脑油中的芳香烃含量超过80%。轻质单环芳烃苯、甲苯、乙苯和二甲苯等为其中的主要芳烃。热解石脑油中的脂肪烃多为不饱和烃。  相似文献   

10.
在流化床反应器中考察了含氧/水蒸气气氛中煤在850 ℃下的热解特性,包括产物分布特性及生成的半焦与焦油的反应性,研究了温度、过量空气比(Equivalence ratio: ER)和水蒸气/煤比(S/C, 质量比)的影响。结果表明,随热解温度、ER和S/C质量比的增加,气体产率增加,而半焦和焦油产率减少。O2的加入使CO2、CO含量明显增加,H2含量降低。O2和水蒸气的加入使半焦的比表面积显著增加,半焦气化活性增强,但半焦在900 ℃和 ER 为0.22的条件下出现轻微石墨化,降低了其气化活性。同时,反应气氛中含有O2和水蒸气对焦油的性质有显著影响,与单纯的N2气氛相比,O2和水蒸气的存在使热解焦油中单环芳烃、酮类、酚类、脂肪烃都明显减少,这对于焦油的进一步裂解及重整更加有利。  相似文献   

11.
主要研究温度、餐饮垃圾种类以及催化剂对餐饮垃圾热解所制生物燃油的产率和品质的影响。结果表明,猪肉和米饭的最佳产油温度均为410℃,白菜的最佳产油温度为450℃。米饭、白菜、猪肉的产油率分别为45.02%、25.60%、71.26%。采用氧弹热量计对其热值进行测定,米饭和白菜热解油的高位热值较低,分别为18.30MJ/kg和17.49MJ/kg;而猪肉热解油的高位热值为36.57 MJ/kg, 并且黏稠度较高。催化剂Co-MCM-41的催化效果明显,使餐饮垃圾的产油率由41.99%提高到66.30%,同时使热解油中的含氧化合物明显降低,而烷烃类和烯烃类的含量明显增加,高位热值由30.30MJ/kg提高到32.74MJ/kg。通过物理吸附仪对新制备的和使用一次后再生的催化剂Co-MCM-41进行表征,结果表明,催化剂Co-MCM-41再生后孔容、孔径和比表面积变化不大,性质基本不变,活性依然存在。
  相似文献   

12.
Optimization of process for the production of bio-oil from eucalyptus wood   总被引:1,自引:0,他引:1  
The pyrolysis of eucalyptus wood was carried out in a batch reactor to optimize the yield of bio-oil.Effect of various parameters like feed(particle) size,temperature,presence of catalyst and heating rate on the yield of bio-oil was investigated.The optimum conditions for high yield of bio-oil are for the particle size 2 mm~5 mm(average l/d=12.84/2.03 mm) at 450 ℃ in high heating rate.The reaction kinetics and the quality of bio-oil produced are independent of the presence of different catalysts like mordenite,kaoline clay,fly ash and silica alumina.The physical properties like odour,colour,PH,viscosity,heating value were determined.The FT-IR analysis of bio-oil indicates the presence of different functional groups such as monomeric alcohol,phenol,ketones,aldehydes,carboxylic acid,amines,and nitro compounds.The composition of the bio-oil at different conditions was analyzed using GC-MS and found that the components are temperature dependent but independent of catalysts used.  相似文献   

13.
利用傅里叶变换红外光谱仪、激光共焦显微拉曼光谱仪和TGA Q500热分析仪对生物油蒸馏残渣及其在不同温度处理后的热解焦炭理化性质进行表征,并对其热失重特性进行分析。结果表明,生物油蒸馏残渣主要是由脂肪族、芳香族和低聚糖类等有机化合物组成;在氮气氛围下热解主要分为三个阶段:30-145℃为小分子物质挥发析出阶段145-550℃为大分子物质裂解和氧化阶段,550-750℃为焦炭产生阶段;热处理过程中各类物质逐步有序热解析出,同时固体产物石墨化程度随着热处理终止温度的升高而升高。  相似文献   

14.
以酸水解法从微拟球藻中提取的粗脂肪为原料,在管式裂解炉中考察不同热解温度下脂肪单组分的热解规律及对微拟球藻全组分各相产率及生物油性能的影响。利用热重分析仪分别考察粗脂肪及全组分的热失重特性,并求出相应的动力学参数。结果表明,脂肪热解能够提高全组分热解有机相产率并改善油品性能。随着温度的升高,粗脂肪与全组分热解后的有机相产率及油品性能的变化趋势相同,且生物油性能均在600℃时达到最佳。经热解,粗脂肪中含氧化合物含量降低,脂肪烃含量显著增加。对比全组分热解,粗脂肪热解后的油品脱氧率及氢、碳元素比例更高,因而增加全组分中脂肪的含量能够促进油品性能的进一步提高。对粗脂肪及全组分的热重数据进行计算,发现两者均满足二级化学反应机理,粗脂肪、全组分的活化能与指前因子分别为64.34 k J/mol与2.94×105min-1,48.13 k J/mol与2.96×103min-1。  相似文献   

15.
微拟球藻热解及其催化热解制备生物油研究   总被引:3,自引:0,他引:3  
在氮气气氛下对微拟球藻直接热解及其在H-ZSM-5上的催化热解实验进行了研究。在573K~773K考察了热解温度对热解油产物分布的影响。与木质纤维素生物质的热解相比,微拟球藻的热解不仅温度更低,而且油的收率更高。催化剂H-ZSM-5在热解中起到了脱极性官能团和芳构化的作用,使得热解油中的芳香族化合物含量增多,极性化合物含量减少。与木质纤维素生物质相比,微拟球藻热解获得的油热值更高,适合进一步加工为燃油。  相似文献   

16.
The transformation of renewable biomass into valuable products as alternatives to fossil fuels is essential for sustainable energy in sustainable society. This work systematically investigates the pyrolysis of sorghum bagasse biomass into bio-char and bio-oil products and studies the effect of temperature (623–823 K) on the conversion of sorghum bagasse and products yields. The physicochemical properties of bio-char were thoroughly studied using powder X-ray diffraction, elemental analysis (CHNSO), scanning electronic microscope, calorific value (CV), and Fourier transform infrared (FTIR) spectroscopy techniques. Also, gas chromatography–mass spectrometry (GC–MS), CV, and FTIR were used to understand the properties of bio-oil. The results obtained indicate that an increase in the pyrolysis temperature from 623 to 823 K leads to a decrease in the bio-char yield from 42.55 to 30.38%. On the other hand, the maximum bio-oil yield of 15.94% was obtained at 723 K. The bio-char obtained at 673 and 773 K was found by FTIR analysis to be composed of a highly ordered aromatic carbon structure. The calorific value of bio-oil, which contains a greater amount of acidic compounds, was found to be 6740 kcal/kg. The GC–MS analyses revealed the presence of octadecenoic acid, p-cresol, 2,6-dimethoxy phenol, 4-ethyl 2-methoxy phenol, phenol, o-guaiacol, and octadecanoic acid in the bio-oil obtained from the pyrolysis of sorghum bagasse biomass. The present study provides useful information for understanding the quality of bio-oil and bio-char obtained from high biomass sorghum bagasse.  相似文献   

17.
Oil palm shell biomass contains a high amount of lignin and thus has the potential to be converted into value-added products. If this biomass is not utilised efficiently, significant loss of valuable chemical products may occur, which otherwise can be recovered. In this paper, a new technique using an overhead stirrer to pyrolyse biomass under microwave (MW) irradiation was investigated. The ratio of biomass to activated carbon was varied to investigate its effect on the temperature profile, product yield and phenol content of the bio-oil. Interestingly, the microwave pyrolysis temperature could be controlled by varying the biomass to carbon ratio. The highest bio-oil yield and phenol content in bio-oil were obtained at a biomass to carbon ratio of 1:0.5. Chemical analyses of bio-oil were performed using FT-IR, GC–MS and 1H NMR techniques. These results indicate that bio-oil consists mainly of aliphatic and aromatic compounds with high amounts of phenol in the bio-oil. Thus, MW pyrolysis with a stirrer successfully produced high-phenol bio-oil compared to other methods. This significant increase in bio-oil quality could either partially or wholly replace petroleum-derived phenol in many phenol-based applications.  相似文献   

18.
Online upgrading of organic vapors from the fast pyrolysis of biomass   总被引:1,自引:0,他引:1  
The online upgrading process that combined the fast pyrolysis of biomass and catalytic cracking of bio-oil was developed to produce a high quality liquid product from the biomass. The installation consisted of a fluidized bed reactor for pyrolysis and a packed bed reactor for upgrading. The proper pyrolysis processing conditions with a temperature of 500℃ and a flow rate of 4m3·h-1 were determined in advance. Under such conditions, the effects of temperature and weight hourly space velocity (WHSV) on both the liquid yields and the oil qualities of the online catalytic cracking process were investigated. The results showed that such a combined process had the superiority of increasing the liquid yield and improving the product quality over the separate processes. Furthermore, when the temperature was 500℃, with a WHSV of 3h-1, the liquid yield reached the maximum and the oxygenic compounds also decreased obviously.  相似文献   

19.
Fossil fuels such as petroleum, charcoal, and natural gas sources are the main energy sources at present, but considering their natural limitation in availability and the fact that they are not renewable, there exists a growing need of developing bio-fuel production. Biomass has received considerable attention as a sustainable feedstock that can replace diminishing fossil fuels for the production of energy, especially for the transportation sector. JackfruitwasteisabundantinIndonesiamake itpotentiallyas one of thegreenrefineryfeedstockforthe manufacture ofbio-fuel.As intermediate of bio-fuel,jackfruitpeelsisprocessed intobio-oil. Pyrolysis, a thermochemical conversion process under oxygen-absent condition is an attractive way to convert biomass into bio- oil.In this study, the pyrolysis experiments were carried out ina fixed-bedreactor at a range of temperature of400-600 °C, heating rate range between 10-50 °C/min, and a range of nitrogen flow between 2-4litre/min. The aims of this work were to explore the effects of pyrolysis conditions and to identify the optimum condition for obtaining the highest bio-oil yield.The effect of nitrogen flow rate and heating rate on the yield of bio-oil were insignificant. The most important parameter in the bio-oil production was the temperature of the pyrolysis process.The yield of bio-oil initially increased with temperature (up to 550 °C) then further increase of temperature resulting in the decreased of bio-oil yield. Results showed that the highest bio-oil yield (52.6%)wasobtainedat 550 °C with nitrogen flow rate of 4L/min and heating rate of 50 °C/min. The thermal degradation of jackfruit peel was also studied using thermogravimetric analysis (TGA). Gas chromatography (GC-MS) was used to identify the organic fraction of bio-oil. The water content in the bio-oil product was determined by volumetric Karl-Fischer titration. The physicochemical properties of bio-oil produced from pyrolysis of jackfruit peels such as gross calorific value, pH, kinematic viscosity, density, sulfur content, ash content, pour point and flash point were determined and compared to ASTM standard of bio-oil (ASTM 7544).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号