首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 570 毫秒
1.
The initial decomposition of methylamine on Mo(100) surface has been investigated by self-consistent (GGA-PW91) density functional theory combined with periodic slab model. The adsorption energies of possible species and the activation energies for possible elementary reactions involved are obtained in the present work. Our results indicate that the barriers decreased with the order of C-N>N-H>C-H. In addition, metastable adsorption of the abstracted hydrogen atom on the hollow site in the final state is also considered for the N-H and C-H bond breaking. For the C-H bond cleavage, the reaction barrier that the abstracted hydrogen located on the hollow site in the final state is lower than that on the bridge site. However, for the N H bond breaking, the barriers are alike for the abstracted hydrogen on both hollow and bridge sites in the final state.  相似文献   

2.
Adsorption of methanol and methoxy at four selected sites(top,bridge,hcp,fcc)on Cu(111)surface has beeninvestigated by density functional theory method at the generalized gradient approximation(GGA)level.The cal-culation on adsorption energies,geometry and electronic structures,Mulliken charges,and vibrational frequenciesof CH_3OH and CH_3O on clean Cu(111)surface was performed with full-geometry optimization,and compared withthe experimental data.The obtained results are in agreement with available experimental data.The most favoriteadsorption site for methanol on Cu(111)surface is the top site,where C-O axis is tilted to the surface.Moreover,the preferred adsorption site for methoxy on Cu(111)surface is the fcc site,and it adsorbs in an upright geometrywith pseudo-C_(3v) local symmetry.Possible decomposition pathways also have been investigated by transition-statesearching methods.Methoxy radical,CH_3O,was found to be the decomposition intermediate.Methanol can be ad-sorbed on the surface with its oxygen atom directly on a Cu atom,and weakly chemisorbed on Cu(111)surface.Incontrast to methanol,methoxy is strongly chemisorbed to the surface.  相似文献   

3.
The density functional theory(DFT) and self-consistent periodic calculation were used to investigate the methanol adsorption on the Pt-Mo(111)/C surface.The adsorption energies,equilibrium geometries and vibration frequencies of CH3OH on nine types of sites on the Pt-Mo(111)/C surface were predicted and the favorite adsorption site for methanol is the top-Pt site.Both sites of valence and conduction bands of doped system have been broadened,which are favorable for electrons to transfer to the cavity.The possible decomposition pathway was investigated with transition state searching and the calculation results indicate that the O-H bond is first broken,and then the methanol decomposes into methoxy.The activation barrier of O-H bond breaking with Pt-Mo catalyst is only 104.8 kJ mol-1,showing that carbon supported Pt-Mo alloys have promoted the decomposition of methanol.Comparing with the adsorption energies of CH3OH on the Pt(111)/C surface and that of CO,the adsorption energies of CO are higher,and Pt(111)/C is liable to be oxidized and loses the activity,which suggests that the catalyst Pt-Mo(111)/C is in favor of decomposing methanol and has better anti-poisoning ability than Pt(111)/C.  相似文献   

4.
《结构化学》2019,38(12)
The adsorption and dissociation behaviors of methanol on Pd(111), Pd/Au(111) and Pd/Rh(111) surfaces were studied using a periodical slab model and the PW91 generalized gradient approximation(GGA) within the framework of first-principles calculations based on density functional theory(DFT). The adsorption energy and geometric parameters for the three surfaces showed that methanol is preferentially adsorbed onto the top-Pd sites and that the adsorption energy of methanol on these surfaces decreases in the order Pd/Au(111) Pd/Rh(111) Pd(111). After adsorption, the C–O, C–H and O–H bonds in methanol adsorbed onto these surfaces are elongated and the vibrational stretching frequency of the O–H bond is obviously redshifted. Furthermore, the first step for the possible dissociation pathway for methanol on these surfaces was calculated. Our results indicate that the O–H bond in methanol decomposes producing methoxy and a hydrogen atom, with the Pd/Au(111) surface exhibiting the smallest dissociation barrier.  相似文献   

5.
Surface structures of Pt-Sn and Pt-Fe bimetallic catalysts have been investigated by means of Mssbauer spectroscopy, Pt-L_Ⅲ-edge EXAFS and H_2-adsorption. The results showed that the second component, such as Sn or Fe, remained in the oxidative state and dispersed on the γ-Al_2O_3 surface after reduction, while Pt was completely reduced to the metallic state and dispersed on either the metal oxide surface or the γ-Al_2O_3 surface. By correlating the distribution of Pt species on different surfaces with the reaction and adsorption performances, it is proposed that two kinds of active Pt species existed on the surfaces of both catalysts, named M_1 sites and M_2 sites. M_1 sites are the sites in which Pt directly anchored on the γ-Al_2O_3 surface, while M_2 sites are those in which Pt anchored on the metal oxide surface. M_1 sites are favorable for low temperature H_2 adsorption, and responsible for the hydrogenolysis reaction and carbon deposition, while M_2 sites which adsorb more H_2 at higher tem  相似文献   

6.
Thiophene adsorption on the Rh(111) surfaces has been investigated by density functional theory.The results show that the adsorption at the hollow and bridge sites is the most stable.The molecular plane of the thiophene ring is distorted,the C=C bond is stretched to 1.448  and the C-C bond is shortened to 1.390.The C-H bonds tilt 22~42oaway from the surface.The calculated adsorption geometries are in reasonable agreement with population analysis and density of states.The thiophene molecule obtains 0.74 electrons,reflecting the interaction between the lone pair of sulfur and the d-orbitals of metal.The reaction paths and transition states for desulfurization of the molecule have been investigated.The bridge adsorption structure of thiophene leads to a thiol via an activated reaction with an energetic barrier of 0.30 eV.This second step is slightly difficult,and dissociation into a C4H4 fragment and a sulfur atom is possible,with an energetic barrier of 0.40 eV.  相似文献   

7.
The 5-parameter Morse potential(5-MP) of the interactions between Cl atoms and Ni surfaces was constructed. The adsorption and diffusion of Cl atoms on Ni low index-surfaces were investigated with 5-MP in detail. All the critical characteristics of the system, such as adsorption site, adsorption geometry, binding energy, eigenvalues for vibration, etc. were obtained. The calculated results show that chlorine atoms are likely to be adsorbed on the high symmetry- sites. Cl atoms locate on the four-fold hollow sites of the intact Ni(100) surface, while they tend to occupy threefold sites on the Ni( 111 ) surface. The four-fold hollow sites are the most stable adsorption sites on the Ni (110) surface for Cl, although the three-fold sites and the long-bridge sites are stable adsorption sites on the Ni(110) surface for the atoms of the first and second periods. For the Cl-Ni surface adsorption system, the surface binding energy of a Cl atom is relevant to the coarse degree of the cluster surface, and the binding energies have an order of Ni ( 111 ) 〈 Ni(100) 〈Ni(100).  相似文献   

8.
Density functional theory periodic slab calculations were carried out for CO adsorption on a series of Mo modified Pt(111) surfaces to provide an insight into the interaction between CO and doped metal surface, an important issue in CO oxidation as well as in promotion and poisoning effects of catalysis. The modification of adsorption properties with respect to those of adsorption on the pure Mo(110) and Pt(111) is described in terms of changes in the adsorption energies, adsorption sites and vibrational properties occurring upon alloying. We believe that the present DFT calculations can provide important information into optimal alloy composition for CO-tolerance, which is not easily obtained by experimental methods.  相似文献   

9.
The various adsorption states of oxygen on different sites of silver surfaces have been studied using CNDO method. The result shows that a fairly strong, adsorption bond is formed when oxygen molecule is adsorbed, in lying down position with its axis parallel to the surface, at the surface bridge site having larger silver-silver distance. In this case, the adsorbed oxygen molecule has fairly strong tendency to dissociate. The most favorite sites on Ag(110) and Ag(111) surfaces for oxygen molecules or atoms to be adsorbed have been suggested after calculation and analysis. The differences of oxygen adsorption on these two surfaces mentioned above have been compared. The most stable adsorption states of oxygen are O_2~(2-), O~(2-) on Ag(110) and O_2~-, O~-on Ag(111). On silver film or polycrystalline silver, O_2~(2-), O_2~-, O~(2-), O~- may coexist. The results are in agreement with experiments.  相似文献   

10.
We applied periodic density-functional theory to investigate the adsorption of HCN on x Ni@Pt(111) bimetallic surfaces(x = 1~4). The results have been compared with those obtained on pure Ni(111) and Pt(111) surfaces. For all bimetallic surfaces,HCN is preferentially tilted with the CN bond parallel to the surface,and adsorption energies increase with an increasing number of layer Ni atoms on the surface. The adsorption energies of HCN on all bimetallic surfaces are larger than that on the Pt(111) surface,whereas the adsorption energies of HCN on 3Ni@Pt(111) and 4Ni@Pt(111) are larger than that on the Ni(111) surface,indicating that the introduction of Ni to the Pt catalyst could increase the activity of bimetallic catalyst in the hydrogenation reaction for nitriles. Larger adsorption energy of HCN leads to a longer C–N bond length and a smaller CN vibrational frequency. The analysis of Bader charge and vibrational frequencies showed obvious weakening of the adsorbed C–N bond and an indication of sp2 hybridization of both carbon and nitrogen atoms.  相似文献   

11.
First-principles calculations based on density functional theory (DFT) and the generalized gradient approximation (GGA) have been used to study the adsorption of CO molecule on the perfect and defective FeS 2 (100) surfaces. The defective Fe 2 S(100) surfaces are caused by sulfur deficiencies. Slab geometry and periodic boundary conditions are employed with partial relaxations of atom positions in calculations. Two molecular orientations, Cand O-down, at various distinct sites have been considered. Total energy calculations indicated that no matter on perfect or deficient surfaces, the Fe position is relatively more favored than the S site with the predicted binding energies of 120.8 kJ/mol and 140.8 kJ/mol, respectively. Moreover, CO was found to be bound to Fe atom in vertical configuration. The analysis of density of states and vibrational frequencies before and after adsorption showed clear changes of the C–O bond.  相似文献   

12.
The adsorption of cyanide on the top site of a series of transition metal M(100) (M = Cu, Ag, Au, Ni, Pd, Pt) surfaces via carbon and nitrogen atoms respectively, with the CN axis perpendicular to the surface, has been studied by means of density functional theory and cluster model. Geometry, adsorption energy and vibrational frequencies have been determined, and the present calculations show that the adsorption of CN through C-end on metal surface is more favorable than that via N-end for the same surface. The vibrational frequencies of CN for C-down configuration on surface are blue-shifted with respect to the free CN, which is contrary to the change of vibrational frequencies when CN is adsorbed by N-down structure. Furthermore, the charge transfer from surface to CN causes the increase of surface work function.  相似文献   

13.
Twenty kinds of adsorptions of HCN on the Fe(100), Fe(111) and Fe(110) surfaces at the 1/4 monolayer coverage are found using the density functional theory. For Fe(100), the adsorption energy of the most stable configuration where the HCN locates at the fourfold site with the C-N bonded to four Fe atoms is 1.928 eV. The most favored adsorption structure for HCN on Fe(111) is f-η3(N)-h-η3(C), in which the C-N bond is almost parallel to the surface, and the adsorption energy is 1.347 eV. On Fe(110), the adsorption energy in the most stable configuration in which HCN locates at the two long-bridge sites is 1.777 eV. The adsorption energy of the parallel orientation for HCN is larger than that of the perpendicular configuration. The binding mechanism of HCN on the Fe(100), Fe(111) and Fe(110) surfaces is also analyzed by Mulliken charge population and the density of states in HCN. The result indicates that the configurations in which the adsorbed HCN becomes the non-linear are beneficial to the formation of the addition reaction for hydrogen. The nature that the introduction of Fe into the catalyst could increase the catalytic activity of the bimetallic catalyst in the addition reaction of hydrogen for nitriles is revealed.  相似文献   

14.
Thiophene adsorption on the(111) surfaces of Pd and Pt have been investigated by density functional theory.The results indicate that the adsorption at the hollow sites is the most stable.To our interest,the molecular plane of thiophene ring is distorted with C=C bond being elongated to 1.450  and C-C bond being shortened to 1.347 ,and the C-H bonds tilt 13.91~44.05o away from this plane.Furthermore,analysis on population and density of states verified the calculated adsorption geometries.Finally,charge analysis suggests that thiophene molecule is an electron acceptor,reflecting the interaction between the lone pair of sulfur and the d-orbitals of metal.  相似文献   

15.
Summaryof main observation and conclusion Understanding and optimizing structure of active sites is of significance in zeolite catalysis.Benzene ethylation is an industrially important process catalyzed by H-MCM-22 zeolite;while the active sites still remain elusive.In this work,density functional theory(DFT)calculations were employed to investigate the benzene ethylation at two different types of Br?nsted acid sites(BAS)in H-MCM-22 zeolite,namely the internal cavity(IC)acid site and the external surface(ES)acid site.Both the stepwise and concerted pathways were addressed.The compari-son of the calculated energetics of two pathways indicates that the benzene ethylation reaction primarily proceeds via the concerted pathway at both the IC and ES acid sites of H-MCM-22.The calculated overall Gibbs free energies at reaction condition(473 K and 3.5 MPa)on the IC and ES acid sites are 90 and 86 kJ/mol,with the rate constants of 1.20×10^3and 2.92×10^3s^-1,respectively.It indicates that benzene ethylation could occur both on the IC and ES acid sites,with the catalytic activity of IC acid site being slightly lower than that of ES acid site.Furthermore,we theoretically reveal that the acid strength at the ES site is slightly weaker than that at the IC site via the frequency shift after the adsorption of CO.The differences in dispersion interaction between ES and IC sites are also quantified by the adsorption of base molecules with different sizes.The calculated results in this work demonstrate that the acid sites at the external surface of H-MCM-22 zeolites are suitable for benzene ethylation to produce ethylbenzene,providing theoretical implications for tailoring the distribution of active sites in H-MCM-22 zeolite.  相似文献   

16.
<正>Adsorption behaviors of 2-bromothiophene on the Rh(111)surface were discussed with DFT.The results revealed that adsorption at the parallel hol site and bridge site was the most stable.After adsorption,bond length of 2-bromothiophene changed significantly.Molecular plane was distorted,and C-H(Br,S)in the molecule was oblique and upswept against the metal surface.Vertical adsorption site was less stable than the plane adsorption site,but there was no distortion for the thiophene ring after adsorption.Aromaticity of 2-bromothiophene was destroyed at the hol and bridge adsorption sites,and the carbon atom in the thiophene ring presented quasi-sp~3 hybridization.After adsorption at the parallel hol,2-bromothiophene obtained 0.86 electrons in total,and Rh(111)surface lost 2.08 electrons in all.  相似文献   

17.
The HCNH and CNH2 adsorption on different coordination sites of Cu(100) was theoretically studied considering the cluster approach. The present calculations show that the bridge site is the most favorite for CNH2 perpendicularly adsorbed on the Cu(100) surface via the C atom. For HCNH absorbed on the Cu(100) surface, the parallel adsorption mode with the C and N atoms nearly directly above the adjacent top sites of Cu(100) surface is the most favored. Both CNH2 and HCNH are strongly bound to the Cu(100) surface with CNH2 which is lightly stable (2.51 kJ·mol^-1), indicating that both species may be co-adsorbed on the Cu(100) surface.  相似文献   

18.
张福兰 《结构化学》2011,30(1):25-30
The density functional theory(DFT) and self-consistent periodic calculation were used to investigate the C2Hx(x = 4~6) species adsorption on the Fe(110) surface. The adsorption energy and equilibrium geometry of the species C2Hx(x = 4~6) on four possible sites(top,hcp,SB and LB) on the Fe(110) surface were predicted and compared. Mulliken charges and density of states analysis of the most stable site have been discussed. It is found that the species of C2H6 and C2H5 are adsorbed strongly on the Fe(110) surface with calculated adsorption energy of -80.24 and -178.89 kJ·mol-1 at the Fe-LB(long-bridge) ,respectively. However,the C2H4 is adsorbed strongly on the Fe(110) surface with calculated adsorption energies of -114.96 kJ·mol-1 at the top. The results indicate that the charge transferring process can be completed by chemisorption between Fe(110) surface and the species. Moreover,the chemical bands can be formed by chemisorptions between the Fe(110) surface and the species,too.  相似文献   

19.
Density functional theory calculations have been performed to study the interaction of small silver clusters, Ag2 ~Ag9, with HCN. The adsorption of HCN on-top site of the silver cluster, among various possible sites, is energetically preferred. The adsorption energies of HCN on the silver clusters reach a local maximum at n = 4, which is only about 0.450 eV, indicating that the adsorbed HCN molecule is weakly perturbed. The adsorbed C–N and C–H stretching frequencies are blue- and red-shifted compared with the values of free HCN, respectively.  相似文献   

20.
The adsorption and diffusion of N atoms on the three low-index Cu planes were studied using 5-parameter Morse potential (5-MP) method, and the best theory-experiment agreement was obtained. N atoms of Cu(100) surface sit on the fourfold hollow site with the vertical height of 0.018 nm closely coplanar with the topmost copper layer, and the four Cu-N bond lengths are 0.182 nm and the fifth Cu-N distance is 0.199 nm. For Cu(111) system, the existence of aberrant Cu(100) reconstructed structure is approved at higher coverage, and at low coverage the structure is almost an ideal Cu(111) surface structure. With respect to Cu(110) system, the N atoms are adsorbed at LB and H3 sites, not at SB site. The diffusion passage and diffusion barrier of adsorbed N atoms were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号