首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
质子化双氧/硫杂卟啉内氢原子迁移反应的理论研究   总被引:1,自引:0,他引:1  
在确定各反应体系反应物、产物稳定构象的基础上, 采用B3LYP/6-31G**方法在Gaussian 03程序下, 对质子化的双氧/硫杂卟啉的内氢迁移(IHAT)反应进行研究, 寻找并优化相应的过渡态, 比较其迁移反应速率的差异. 计算结果表明, 质子化双氧/硫杂卟啉的构象稳定性仍然是由芳香性、空间位阻、静电作用共同决定的. 质子化后的双取代体系的内氢迁移反应速率大小差异显著, 内环取代对IHAT反应速率的影响主要来源于电子效应, 而非构象变化; 且双取代对体系IHAT反应速率的影响要远大于单取代.  相似文献   

2.
用INDO/CI法计算了等电子氧杂、硫杂、氮杂卟啉的电子结构及低激发态电子跃迁.从前线轨道特征、电荷分布等与自由卟啉对比讨论了杂原子取代卟啉的电子结构.计算结果还预期了一些杂原子取代卟啉的低激发态电子跃迁光谱.  相似文献   

3.
杂环化合物的高效构建是有机合成领域的重要课题,[m+n]环化反应可将两个相对简单易得的反应底物进行组合,是构建环状骨架的重要手段.基于负氢迁移策略的[m+n]环化反应将两个相对易得的底物原位生成负氢受体,避免反应底物的预制,具有高的原子和步骤经济性.选取基于负氢迁移策略的[m+n]环化反应为研究对象,从通过该类反应所构建的氮杂、氧杂环骨架着手,按照生成氮杂、氧杂环的大小进行分类,综述了2018年以来基于负氢迁移策略的[m+n]环化反应的研究进展,并对该领域的发展方向进行了展望.  相似文献   

4.
化学简讯     
在硼氢化反应研究方面久负盛名的H.C.布朗教授最近发现,甲硼烷:1,4-氧硫杂环己烷(Ⅰ)是一种更为便利的硼氢化剂。在氮气保护下于二甘醇二甲醚中使氢硼化钠(21.6克)和氟化硼乙醚溶液(91.2毫升)反应,产生的乙硼烷室温下通入1,4-氧硫杂环己烷(56.2毫升)中至饱和,即制得试剂(Ⅰ),其浓度为8摩尔,冷却到0℃时结晶,熔点11—15℃。  相似文献   

5.
4-氧杂-6,7-环硫庚基三甲氧基硅烷依次与气相法二氧化硅及水,三氯化铑反应,合成了聚-4-氧杂-6,7-环硫庚基硅氧烷铑配合物。研究了其对烯烃硅氢加成反应的催化性能。  相似文献   

6.
利用三氟乙酸和三氟化硼乙醚在醇羟基与吡咯反应中的催化活性差异, 使非对称取代噻吩双醇中的羟基选择性地与吡咯反应, 得到单吡咯或双吡咯中间体. 这些中间体经进一步的环化反应, 得到一系列21,23-二硫杂卟啉衍生物, 并通过核磁共振氢谱、质谱、紫外-可见光谱和荧光光谱对其结构进行了表征.  相似文献   

7.
N—烃氧丙酰基四氢噻唑—2—硫酮的合成   总被引:1,自引:0,他引:1  
在三聚氯氰存在下由烃氧丙酸与四氢噻唑-2-硫酮反应得到N-烃氧丙酰四氢噻哇-2-硫酮(2a-i),由2a,c-h与格氏试剂反应得到烃氧乙基苯基酮(3a,c-h).产物2a-i未见报道.  相似文献   

8.
6-(ω'-十一碳烯氧甲基)-1-硫杂-4,7,1O,13-四氧杂环十五烷与三乙氧基硅烷进行硅氢加成,产物依次以气相法二氧化硅固载、氯亚铂酸钾或三氯化铑络合,合成了相应的二氧化硅-聚硅氧烷负载硫杂-15-冠-5-铂、铑配合物,并研究了它们在烯烃与三乙氧基硅烷的硅氢加成反应中的催化性能.结果表明,二者均为硅氢加成反应的高效催化剂.  相似文献   

9.
以对苯二甲醛、丙二腈、季戊四醇和毗咯为原料,合成了含有螺环结构单元的中间体3-[4-(2,2-二氰基)乙烯基]苯基-9-(4-甲酰基)苯基-2,4,8,10-四氧杂螺[5.5]十一烷(3)和α,β,γ,δ-四-(4-甲酰基苯基)卟啉(4).4与过量的季戊四醇反应,得到α,β,γ,δ-四-{4-[2-(5,5-二羟甲基-1,3-二噁烷基)]}苯基卟啉(5),5与3的反应产物经10%NaOH处理后,再与过量的季戊四醇反应,得到α,β,γ,δ-四-{4-[3-(9-(4-(3-(9-(4-(2-(5,5-二羟甲基-1,3-二噁烷基))))苯基一2,4,8,10.四氧杂螺[5.5]十一烷基)))苯基-2,4,8,10-四氧杂螺[5.5]十一烷基]]苯基卟啉(6),6与乙酐、丙酐、苯甲酰氯反应,得到α,β,γ,δ-四-{4-[3-(9-(4-(3-(9-(4-(2-(5,5-二乙酰氧基甲基-1,3-二噁烷基))))苯基-2,4,8,10-四氧杂螺[5.5]十一烷基)))苯基-2,4,8,10-四氧杂螺[5.5]十一烷基])苯基卟啉(7),α,β,γ,δ-四-{4-[3-(9-(4-(3-(9-(4-(2-(5,5-二丙酰氧基甲基-1,3-二噁烷基))))苯基.2,4,8,10-四氧杂螺[5.5]十一烷基)))苯基-2,4,8,10-四氧杂螺[5.5]十一烷基]}苯基卟啉(8)和α,β,γ,δ-四-{4-[3-(9-(4-(3-(9-(4-(2-(5,5-二苯甲酰氧基甲基-1,3-二噁烷基))))苯基-2,4,8,10-四氧杂螺[5.5]十一烷基)))苯基-2,4,8,10-四氧杂螺[5.5]十一烷基]}苯基卟啉(9)等三种卟啉星形化合物.中间体1~6和星形化合物7~9均进行了IR,1H NMR,MS和元素分析等结构表征.对影响反应的诸因素进行了讨论.  相似文献   

10.
二(β-氯乙基)烯丙胺与3,6-二氧杂辛-1,8-二硫醇在乙醇钠存在下关环缩合,得到具有烯基侧链的1,7-二硫杂-10,13-二氧杂-4-氮杂-4-烯丙基环十五烷.后者通过硅氢加成、二氧化硅固载.再与氯亚铂酸钾反应,合成了一种新型有机硅聚合物负载硫、氮杂冠醚及其铂配合物.该配合物对于烯烃硅氢加成反应具有良好的催化性能.  相似文献   

11.
T Peter Rakitzis 《Chemphyschem》2004,5(10):1489-1494
Spin-polarized hydrogen (SPH) atoms have traditionally been produced and detected using complex experimental methods with poor time resolution. Recently, SPH has been produced by pulsed-laser photodissociation of HCl using circularly polarized light. In combination with the proposed detection of SPH via polarized fluorescence, this approach should allow the production and spatially resolved detection of SPH with a higher sensitivity than that currently available, and with a time resolution in the nanosecond regime. This represents an improvement of several orders of magnitude over the existing methods.  相似文献   

12.
In this paper, we first report a novel biosensor for the detection of paraoxon based on (CdSe)ZnS core-shell quantum dots (QDs) and an organophosphorus hydrolase (OPH) bioconjugate. The OPH was coupled to (CdSe)ZnS core-shell QDs through electrostatic interaction between negatively charged QDs surfaces and the positively charged protein side chain and ending groups (-NH2). Circular dichroism (CD) spectroscopy showed no significant change in the secondary structure of OPH after the bioconjugation, which indicates that the activity of OPH was preserved. Detectable secondary structure changes were observed by CD spectroscopy when the OPH/QDs bioconjugate was exposed to organophosphorus compounds such as paraoxon. Photoluminescence (PL) spectroscopic study showed that the PL intensity of the OPH/QDs bioconjugate was quenched in the presence of paraoxon. The overall quenching percentage as a function of paraoxon concentration matched very well with the Michaelis-Menten equation. This result indicated that the quenching of PL intensity was caused by the conformational change in the enzyme, which is confirmed by CD measurements. The detection limit of paraoxon concentration using OPH/QDs bioconjugate was about 10(-8) M. Although increasing the OPH molar ratio in the bioconjugates will slightly increase the sensitivity of biosensor, no further increase of sensitivity was achieved when the molar ratio of OPH to QDs was greater than 20 because the surface of QDs was saturated by OPH. These properties make the OPH/QDs bioconjugate a promising biosensor for the detection of organophosphorus compounds.  相似文献   

13.
The objective of this study was to characterize and evaluate the physicochemical properties and drug release profiles of hydrogels composed of silk protein (SP) polymers. SPs with a low MW (SPL, ca. 18 kDa) and a high MW (SPH, ca. 76 kDa) were used for preparing hydrogels. Both the random coil form and beta-sheet conformation simultaneously existed in the hydrogels according to Fourier-transformed IR determination. Morphologically, the hydrogels showed a sponge-like cross-linked structure produced by physical entanglement as well as chemical hydrogen and covalent bindings. The in vitro buprenorphine delivery from SPH hydrogels showed a slow-release effect, and a zero-order rate was obtained for all preparations. Drug release could be controlled by varying the SPH concentrations or incorporation of SPL into the systems. SP hydrogels showed a stronger barrier property for hydrophilic solutes than for hydrophobic solutes. The incorporation of SPH into Pluronic F-127 (PF-127) hydrogels changed the gel structure from amorphous micelles to a regularly interconnected texture with pores. Furthermore, SPH as an adjuvant polymer in PF-127 and chitosan hydrogels lowered and controlled the amount of drug released from those systems.  相似文献   

14.
To gain a better understanding of the influence of ligand-surface interactions on nanocrystalline growth, periodic density functional theory calculations were employed in the study of the binding of organic ligands on the relaxed nonpolar (1120) and polar Se terminated (0001) surfaces and the relaxed and vacancy and adatom reconstructed Cd terminated (0001) surface. We examined chemisorption properties of phosphine, amine, phosphine oxide, carboxylic acid, and phosphinic acid model ligands, including preferred binding sites and geometries, vibrational frequencies, and binding energetics, and compared findings to intrinsic growth via addition of CdSe molecules or Cd and Se atoms. Our results indicate that binding of the ligands is preferred in the electron-poor 1-fold sites on all surfaces, with secondary coordination of the acidic ligands through the hydroxyl hydrogen to the electron-rich surface sites. In general ligand adsorption directly obstructs binding sites for growth species on the (1120) surface and only indirectly on the two polar surfaces. The order of binding affinities on the (1120) and (0001) surfaces is PH(3) < OPH(3) approximately HCOOH < NH(3) < OPH(2)OH and that on the (0001) surface is OPH(3) approximately HCOOH < OPH(2)OH < NH(3) < PH(3). Our findings corroborate the experimental observation that incorporation of the nonbulky phosphinic acid-type ligands with high affinity and high selectivity for both the (1120) and (0001) surfaces strongly enhances unidirectional growth on the (0001) surface, while incorporation of either bulky ligands or ligands with moderate affinity does not. Higher affinity of all traditionally used ligands for the (1120) surface compared to the (0001) surface also suggests that new ligands should be engineered to achieve the synthesis of novel shapes that require preferential growth on the (1120) surface.  相似文献   

15.
The paraoxon hydrolysis reaction catalyzed by organophosphorus hydrolase (OPH) monolayer at the air-water interface was studied. OPH-paraoxon interactions, occurring at the two-dimensional interface, by close-packed, highly orientated OPH monolayer, were investigated by several different surface chemistry techniques; e.g. surface pressure area isotherms, atomic force microscopy (AFM), and in situ epifluorescence microscopy. The characterization of OPH Langmuir and Langmuir-Blodgett films prepared in both the presence and absence of paraoxon, demonstrated significantly distinctive feature when compared with one another. Continuous growth of the OPH aggregates is a distinct phenomenon associated with hydrolysis, in addition to the pH changes in the local environment of the enzyme macromolecules.  相似文献   

16.
17.
The equilibrium geometries of the molybdenum oxo/peroxo compounds MoOn(O2)3-n and the related complexes [MoOn(O2)3-n(OPH3)] and [MoOn(O2)3-n(OPH3)(H2O)] (n = 0-3) have been calculated using gradient-corrected density-functional theory at the B3LYP level. The structures of the peroxo complexes with ethylene ligands [MoOn(O2)3-n(C2H4)] and [MoOn(O2)3-n(OPH3)(C2H4)] (n = 1, 2) where ethylene is directly bonded to the metal have also been optimized. Calculations of the metal-ligand bond-dissociation energies show that the OPH3 ligand in [MoOn(O2)3-n(OPH3)] is much more strongly bound than the ethylene ligand in [MoOn(O2)3-n(C2H4)]. This makes the substitution of phosphane oxide by olefins in the epoxidation reaction unlikely. An energy-minimum structure is found for [MoO(O2)2(OPH3)(C2H4)], for which the dissociation of C2H4 is exothermic with D0 = -5.2 kcal/mol. The reaction energies for the perhydrolysis of the oxo complexes with H2O2 and the epoxidation of ethylene by the peroxo complexes have also been calculated. The peculiar stability of the diperoxo complex [MoO(O2)2(OPH3)(H2O)] can be explained with the reaction energies for the perhydrolysis of [MoOn(O2)3-n(OPH3)(H2O)]. The first perhydrolysis step yielding the monoperoxo complex is less exothermic than the second perhydrolysis reaction, but the further reaction with H2O2 yielding the unknown triperoxo complex is clearly endothermic. CDA analysis of the metal-ethylene bond shows that the binding interactions are mainly caused by charge donation from the ligand to the metal.  相似文献   

18.
We report the measurement of the spin polarization of hydrogen (SPH) atoms by (2+1) laser-induced fluorescence, produced via the photodissociation of thermal HBr molecules with circularly polarized 193 nm light. This scheme, which involves two-photon laser excitation at 205 nm and fluorescence at 656 nm, offers an experimentally simpler polarization-detection method than the previously reported vacuum ultraviolet detection scheme, allowing the detection of SPH atoms to be performed more straightforwardly, from the photodissociation of a wide range of molecules and from a variety of collision experiments.  相似文献   

19.
The mechanisms of structural reorganization of a protein globule resulting in changes in the stability of enzyme depending on the pH of the medium were revealed by molecular dynamics modeling of the structure of the organophosphorus hydrolase (OPH) dimer. The same reorganization leads to changes in the substrate specificity of the enzyme depending on its genetic modification, which was experimentally confirmed. Based on the obtained theoretical data, it was concluded that the dimerization significantly affects the catalytic characteristics of the native form of OPH. An analysis of the whole set of theoretical and experimental data concerning the characteristics of the OPH chimeric forms suggests that their changes with respect to native OPH is a decrease in the level of dimerization of chimeric protein molecules.  相似文献   

20.
The display of proteins to cyanobacterial cell surface is made complex by combination of Gram-positive and Gram-negative features of cyanobacterial cell wall. Here, we showed that Synechococcus outer membrane protein A (SomA) can be used as an anchoring motif for the display of organophosphorus hydrolase (OPH) on cyanobacterial cell surface. The OPH, capable of degrading a wide range of organophosphate pesticides, was fused in frame to the carboxyl-terminus of different cell-surface exposed loops of SomA. Proteinase K accessibility assay and immunostaining visualized under confocal laser scanning microscopy demonstrated that a minor fraction of OPH with 12 histidines fused in frame with the third cell-surface exposed loop of SomA (SomAL3-OPH12H) was displayed onto the outermost cell surface with a substantial fraction buried in the cell wall, whereas OPH fused in frame with the fifth cell-surface exposed loop of SomA (SomAL5-OPH) was successfully translocated across the membrane and completely displayed onto the outermost surface of Synechococcus. The successful display of the functional heterologous protein on cell surface provides a useful model for variety of applications in cyanobacteria including screening of polypeptide libraries and whole-cell biocatalysts by immobilizing enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号