首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new class of polymeric thermometers with a memory function is reported that is based on the supramolecular host–guest interactions of poly(N‐isopropylacrylamide) (PNIPAM) with side‐chain naphthalene guest moieties and the tetracationic macrocycle cyclobis(paraquat‐p‐phenylene) (CBPQT4+) as the host. This supramolecular thermometer exhibits a memory function for the thermal history of the solution, which arises from the large hysteresis of the thermoresponsive LCST phase transition (LCST=lower critical solution temperature). This hysteresis is based on the formation of a metastable soluble state that consists of the PNIPAM–CBPQT4+ host–guest complex. When heated above the transition temperature, the polymer collapses, and the host–guest interactions are disrupted, making the polymer more hydrophobic and less soluble in water. Aside from providing fundamental insights into the kinetic control of supramolecular assemblies, the developed thermometer with a memory function might find use in applications spanning the physical and biological sciences.  相似文献   

2.
The promiscuous encapsulation of π‐electron‐rich guests by the π‐electron‐deficient host, cyclobis(paraquat‐p‐phenylene) (CBPQT4+), involves the formation of 1:1 inclusion complexes. One of the most intensely investigated charge‐transfer (CT) bands, assumed to result from inclusion of a guest molecule inside the cavity of CBPQT4+, is an emerald‐green band associated with the complexation of tetrathiafulvalene (TTF) and its derivatives. This interpretation was called into question recently in this journal based on theoretical gas‐phase calculations that reinterpreted this CT band in terms of an intermolecular side‐on interaction of TTF with one of the bipyridinium (BIPY2+) units of CBPQT4+, rather than the encapsulation of TTF inside the cavity of CBPQT4+. We carried out DFT calculations, including solvation, that reveal conclusively that the CT band emerging upon mixing TTF with CBPQT4+ arises from the formation of a 1:1 inclusion complex. In support of this conclusion, we have performed additional experiments on a [2]rotaxane in which a TTF unit, located in the middle of its short dumbbell, is prevented sterically from interacting with either one of the two BIPY2+ units of a CBPQT4+ ring residing on a separate [2]rotaxane in a side‐on fashion. This [2]rotaxane has similar UV/Vis and 1H NMR spectroscopic properties with those of 1:1 inclusion complexes of TTF and its derivatives with CBPQT4+. The [2]rotaxane exists as an equimolar mixture of cis‐ and trans‐isomers associated with the disubstituted TTF unit in its dumbbell component. Solid‐state structures were obtained for both isomers, validating the conclusion that the TTF unit, which gives rise to the CT band, resides inside CBPQT4+.  相似文献   

3.
We report on the kinetics and ground‐state thermodynamics associated with electrochemically driven molecular mechanical switching of three bistable [2]rotaxanes in acetonitrile solution, polymer electrolyte gels, and molecular‐switch tunnel junctions (MSTJs). For all rotaxanes a π‐electron‐deficient cyclobis(paraquat‐p‐phenylene) (CBPQT4+) ring component encircles one of two recognition sites within a dumbbell component. Two rotaxanes (RATTF4+ and RTTF4+) contain tetrathiafulvalene (TTF) and 1,5‐dioxynaphthalene (DNP) recognition units, but different hydrophilic stoppers. For these rotaxanes, the CBPQT4+ ring encircles predominantly (>90 %) the TTF unit at equilibrium, and this equilibrium is relatively temperature independent. In the third rotaxane (RBPTTF4+), the TTF unit is replaced by a π‐extended analogue (a bispyrrolotetrathiafulvalene (BPTTF) unit), and the CBPQT4+ ring encircles almost equally both recognition sites at equilibrium. This equilibrium exhibits strong temperature dependence. These thermodynamic differences were rationalized by reference to binding constants obtained by isothermal titration calorimetry for the complexation of model guests by the CBPQT4+ host in acetonitrile. For all bistable rotaxanes, oxidation of the TTF (BPTTF) unit is accompanied by movement of the CBPQT4+ ring to the DNP site. Reduction back to TTF0 (BPTTF0) is followed by relaxation to the equilibrium distribution of translational isomers. The relaxation kinetics are strongly environmentally dependent, yet consistent with a single electromechanical‐switching mechanism in acetonitrile, polymer electrolyte gels, and MSTJs. The ground‐state equilibrium properties of all three bistable [2]rotaxanes were reflective of molecular structure in all environments. These results provide direct evidence for the control by molecular structure of the electronic properties exhibited by the MSTJs.  相似文献   

4.
The properties of tetrathiafulvalene dimers ([TTF]22+) and the functionalized ring‐shaped bispropargyl (BPP)‐functionalized TTF dimers, [BPP–TTF]22+, found at room temperature in charged [3]catenanes, were evaluated by M06L calculations. The results showed that their isolated [TTF]22+ and [BPP–TTF]22+ dimers are energetically unstable towards dissociation. When enclosed in the 4+‐charged central cyclophane ring of charged [3]catenanes (CBPQT4+), [TTF]22+ and [BPP–TTF]22+ dimers are also energetically unstable with respect to leaving the CBPQT4+ ring; since the barrier for the exiting process is only about 3 kcal mol?1, that is, within the reach of thermal energies at room temperature (neutral [TTF]20 dimers are stable within the CBPQT4+ ring). However, the [BPP–TTF]22+ dimers in charged [3]catenanes cannot exit, because this would imply breaking the covalent bonds of the BPP–TTF+ macrocycle. Finally, it was shown that the [TTF]22+, [BPP–TTF]22+ dimers, and charged [3]catenanes are energetically stable in solution and in crystals of their salts, in the first case due to the interactions with the solvent, and in the second case mostly due to cation–anion interactions. In these environmental conditions at room temperature the TTF units of the [BPP–TTF]22+ dimers make short contacts, thus allowing their SOMO orbitals to overlap: a room‐temperature multicenter long bond is formed, similar to those previously found in other [TTF]22+ salts and their solutions.  相似文献   

5.
Combining the concepts of supramolecular polymers and dendronized polymers provides the opportunity to create bulky polymers with easy structural modification and tunable properties. In the present work, a novel class of side‐chain supramolecular dendronized polymethacrylates is prepared through the host–guest interaction. The host is a linear polymethacrylate (as the backbone) attached in each repeat unit with a β‐cyclodextrin (β‐CD) moiety, and the guest is constituted with three‐fold branched oligoethylene glycol (OEG)‐based first‐ (G1) and second‐generation (G2) dendrons with an adamantyl group core. The host and guest interaction in aqueous solution leads to the formation of the supramolecular polymers, which is supported with 1H NMR spectroscopy and dynamic light scattering measurements. The supramolecular formation was also examined at different host/guest ratios. The water solubility of hosts and guests increases upon supramolecular formation. The supramolecular polymers show good solubility in water at room temperature, but exhibit thermoresponsive behavior at elevated temperatures. Their thermoresponsiveness is thus investigated with UV/Vis and 1H NMR spectroscopy, and compared with their counterparts formed from individual β‐CD and the OEG dendritic guest. The effect of polymer concentration and molar ratio of host/guest was examined. It is found that the polar interior of the supramolecules contribute significantly to the thermally‐induced phase transitions for the G1 polymer, but this effect is negligible for the G2 polymer. Based on the temperature‐varied proton NMR spectra, it is found that the host–guest complex starts to decompose during the aggregation process upon heating to its dehydration temperature, and this decomposition is enhanced with an increase of solution temperature.  相似文献   

6.
The synthesis of a thermoresponsive hydrogel of poly(glycidyl methacrylate‐coN‐isopropylacrylamide) (PGMA‐co‐PNIPAM) and its application as a nanoreactor of gold nanoparticles are studied. The thermoresponsive copolymer of PGMA‐co‐PNIPAM is first synthesized by the copolymerization of glycidyl methacrylate and N‐isopropylacrylamide using 2,2′‐azobis(isobutyronitrile) as an initiator in tetrahydrofuran at 70 °C and then crosslinked with diethylenetriamine to form a thermoresponsive hydrogel. The lower critical solution temperature (LCST) of the thermoresponsive hydrogel is about 50 °C. The hydrogel exists as 280‐nm spheres below the LCST. The diameter of the spherical hydrogel gradually decreases to a minimum constant of 113 nm when the temperature increases to 75 °C. The hydrogel can act as a nanoreactor of gold nanoparticles because of the coordination of nitrogen atoms of the crosslinker with gold ions, on which a hydrogel/gold nanocomposite is synthesized. The LCST of the resultant hydrogel/gold nanocomposite is similar to that of the hydrogel. The size of the resultant gold nanoparticles is about 15 nm. The hydrogel/gold nanocomposite can act as a smart and recyclable catalyst. At a temperature below the LCST, the thermoresponsive nanocomposite is a homogeneous and efficient catalyst, whereas at a temperature above the LCST, it becomes a heterogeneous one, and its catalytic activity greatly decreases. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2812–2819, 2007  相似文献   

7.
A nanocage coupling effect from a redox RuII‐PdII metal–organic cage (MOC‐16) is demonstrated for efficient photochemical H2 production by virtue of redox–guest modulation of the photo‐induced electron transfer (PET) process. Through coupling with photoredox cycle of MOC‐16, tetrathiafulvalene (TTF) guests act as electron relay mediator to improve the overall electron transfer efficiency in the host–guest system in a long‐time scale, leading to significant promotion of visible‐light driven H2 evolution. By contrast, the presence of larger TTF‐derivatives in bulk solution without host–guest interactions results in interference with PET process of MOC‐16, leading to inefficient H2 evolution. Such interaction provides an example to understand the interplay between the redox‐active nanocage and guest for optimization of redox events and photocatalytic activities in a confined chemical nanoenvironment.  相似文献   

8.
A series of cationic dendrons bearing triethylene glycol monomethyl ether terminal groups of different generations have been synthesized and used to encapsulate an inorganic polyanionic cluster [K12.5Na1.5(NaP5W30O110)] through electrostatic interactions. The resulting dendritic cation–encapsulated polyoxometalate (POM) complexes, cluster–dendrimers, are soluble in water and exhibit lower critical solution temperatures (LCST). The thermoresponsivities of these complexes in aqueous solutions were studied by turbidimetry and variable‐temperature 1H NMR spectroscopy. The observed cloud points show a remarkable dependence on the generation of the dendrons. Complexes composed of first‐generation dendrons exhibit no obvious thermoresponsive properties, but for complexes bearing second‐generation dendrons, the LCST decreases as the number of dendritic cations around the POM cluster increases. Complexes composed of third‐generation cations underwent reversible aggregation and disaggregation upon heating and cooling, respectively. This thermally induced self‐aggregation was characterized by DLS and TEM. In addition, the effects of salt and solvent on the LCST were investigated. This research demonstrates a new type of thermoresponsive dendritic organic–inorganic hybrid complex and provides a general route to the endowment of POMs with temperature‐sensitive properties through electrostatic interactions.  相似文献   

9.
《化学:亚洲杂志》2017,12(17):2231-2236
Thermoresponsive water‐soluble polymers are of great importance since they typically show a lower critical solution temperature (LCST) in aqueous media. In this research, the LCST change in broad temperature ranges of copolymers composed of natural glycyrrhetinic acid (GA)‐based methacrylate and N ,N′ ‐dimethylacrylamides (DMAs) was investigated as a function of the concentration and the content of GA pendants. By complexation of GA pendants with β‐cyclodextrin (β‐CD), a side‐chain polypseudorotaxane was obtained, which exhibited a significant increase in the LCST of copolymers. Moreover, the precisely reversible control of the LCST behavior was realized through adding a competing guest molecule, sodium 1‐admantylcarboxylate. This work illustrates a simple and effective approach to endow water‐soluble polymers with broad temperature tunability and helps us further understand the effect of a biocompatible host–guest complementary β‐CD/GA pair on the thermoresponsive process.  相似文献   

10.
Two dynamic covalent polymers P1 and P2 were prepared by alternately linking electron‐rich tetrathiafulvalene (TTF) and electron‐deficient bipyridinium (BIPY2+) through hydrazone bonds. In acetonitrile, the polymers were induced by intramolecular donor–acceptor interactions to form pleated foldamers, which unfolded upon oxidation of the TTF units to the radical cation TTF.+. Reduction of the BIPY2+ units to BIPY.+ led to the formation of another kind of pleated secondary structures, which are stabilized by intramolecular dimerization of the BIPY.+ units. The diradical dicationic cyclophane cyclobis(paraquat‐p‐phenylene) (CBPQT2(.+)) could further force the folded structures to unfold by including the BIPY.+ units of the polymers. Upon oxidation of the BIPY.+ units of the cyclophane and polymers to BIPY2+, the first folded state was regenerated. Switching or conversion between the four conformational states was confirmed by UV/Vis spectroscopic experiments.  相似文献   

11.
The use of soluble thermoresponsive polymers to sequester or scavenge hydrophobic guest molecules from dilute aqueous solutions on heating is described. In these studies, a homopolymer of N‐isopropylacrylamide was shown to sequester 46–83% of a soluble monochlorotriazine from 0.1–10 ppm aqueous solutions when heating above this polymer's lower critical solution temperature (LCST). Substitution of the reactive piperidine‐containing 20:1 copolymer poly(N‐isopropylacrylamide)‐c‐poly[N‐4‐(acrylamidomethyl)piperidine] for this unreactive polymer led to >98% scavenging of these same triazines when heating above this reactive polymer's LCST. The monochlorotriazine guests studied included the herbicide atrazine and two dye‐labeled analogues of this herbicide. In one case, an atrazine analogue was designed so as to contain a dansyl group for fluorescence analysis. In the second case, an atrazine analogue was labeled with a methyl red group to facilitate visual and spectrophotometric analysis. Atrazine concentrations were measured with liquid chromatography–mass spectrometry. The enhanced efficiency of the reactive piperidine‐containing copolymer scavenger in removing triazines from solution is attributed to covalent bond formation by nucleophilic aromatic substitution of the chlorine of the monochlorotriazines by the piperidine nucleophile on the copolymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6309–6317, 2004  相似文献   

12.
A tetra-stable donor–acceptor [2]rotaxane 1 ⋅4PF6 has been synthesized. The dumbbell component is comprised of an oxyphenylene (OP), a tetrathiafulvalene (TTF), a monopyrrolo-TTF (MPTTF), and a hydroquinone (HQ) unit, which can act as recognition sites (stations) for the tetra-cationic cyclophane cyclobis(paraquat-p-phenylene) (CBPQT4+). The TTF and the MPTTF stations are located in the middle of the dumbbell component and are connected by a triethylene glycol (TEG) chain in such a way that the pyrrole moiety of the MPTTF station points toward the TTF station, while the TTF and MPTTF stations are flanked by the OP and HQ stations on their left hand side and right hand side, respectively. The [2]rotaxane was characterized in solution by 1H NMR spectroscopy and cyclic voltammetry. The spectroscopic data revealed that the majority (77 %) of the tetra-stable [2]rotaxane 1 4+ exist as the translational isomer 1 ⋅MPTTF4+ in which the CBPQT4+ ring encircles the MPTTF station. The electrochemical studies showed that CBPQT4+ in 1 ⋅MPTTF4+ undergoes ring translation as result of electrostatic repulsion from the oxidized MPTTF unit. Following tetra-oxidation of 1 ⋅MPTTF4+, a high-energy state of 1 8+ was obtained (i.e., 1 ⋅TEG8+) in which the CBPQT4+ ring was located on the TEG linker connecting the di-oxidized TTF2+ and MPTTF2+ units. 1H NMR spectroscopy carried out in CD3CN at 298 K on a chemically oxidized sample of 1 ⋅MPTTF4+ revealed that the metastable state 1 ⋅TEG8+ is only short-lived with a lifetime of a few minutes and it was found that 70 % of the positively charged CBPQT4+ ring moved from 1 ⋅TEG8+ to the HQ station, while 30 % moved to the much weaker OP station. These results clearly demonstrate that the CBPQT4+ ring can cross both an MPTTF2+ and a TTF2+ electrostatic barrier and that the free energy of activation required to cross MPTTF2+ is ca. 0.5 kcal mol−1 smaller as compared to TTF2+.  相似文献   

13.
A calix‐conjugated thermo‐responsive hydrogel containing 15% tetra(5‐hexenyloxy)‐p‐tert‐butylcalix[4]arene (HBCalix), P(NIPAM‐co‐HBCalix), was used to remove nickel(II) ions from water. Both thermo‐sensitive properties and the Ni2+‐adsorption capabilities of the prepared P(NIPAM‐co‐HBCalix) hydrogels are investigated. Introduction of the monomer HBCalix considerably enhanced the adsorption of Ni2+ onto the hydrogel by chelation between hexenyloxy groups and metal ion. When HBCalix units capture Ni2+ and forms HBCalix/Ni2+ host–guest complexes, the lower critical solution temperature of the hydrogel shifts to a higher temperature due to both the repulsion between charged HBCali/Ni2+ groups and the osmotic pressure within the hydrogel. Adsorption studies were carried out by varying contact time, counter ion and initial concentration of Ni2+. The evaluation of adsorption properties showed that the hydrogel exhibited better correlation with Langmuir isotherm model. P(NIPAM‐co‐HBCalix) could be used repeatedly with little loss in adsorption capacity by simply changing the environmental temperature. This kind of ion‐recognition hydrogel is promising as a novel adsorption material for adsorption and separation of Ni2+ ions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2401–2408  相似文献   

14.
Thermoresponsive sol–gel transition polymers based on biodegradable poly(amino acid) were synthesized by the reaction of poly(succinimide) with dodecylamine and amino alcohols. The introduction of the hydrophobic amine into the thermoresponsive poly(amino acid)s induced the sol–gel transition in phosphate buffer saline. The effects of the side chain structure, molecular weight, concentration of the polymer, and the additives (inorganic salts and urea) in the solution on the thermoresponsive behaviors were systematically investigated. A relationship between the lowest critical solution temperature (LCST) in the dilute solution and the viscosity reduction of the concentrated solution upon heating was observed. The present poly(amino acid)s showing a thermoresponsive sol–gel transition in aqueous solutions possess immense potential as an injectable biodegradable hydrogel system for various biomedical applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Thermoresponsive hydrogels are of great importance as smart materials. They are usually composed of cross-linked polymers with a lower critical solution temperature (LCST). Although much is known about networks of poly(N-isopropylacrylamide), all other polymers are somewhat neglected. In this work, the temperature-dependent swelling behavior of differently cross-linked thermoresponsive poly(2-ethyl-2-oxazoline) (PEtOx) hydrogels were investigated with regard to varying parameters of the network composition. It was found that the degrees of swelling of the hydrogels converge for a certain polymer/solvent system at a distinct temperature independent of its degree of cross-linking. Furthermore, this temperature correlates with the LCST of the respective starting PEtOx. Its net chain molecular weight Mc only affects the maximum degree of swelling and thus, the swelling–deswelling rate of the hydrogel. The fundamental structure/property relations found in this study could be useful to predict the behavior of other thermoresponsive hydrogels.  相似文献   

16.
A methodology for preparing supramolecular hydrogels from guest‐modified cyclodextrins (CDs) based on the host–guest and hydrogen‐bonding interactions of CDs is presented. Four types of modified CDs were synthesized to understand better the gelation mechanism. The 2D ROESY NMR spectrum of β‐CD‐AmTNB (Am=amino, TNB=trinitrobenzene) reveals that the TNB group was included in the β‐CD cavity. Pulsed field gradient NMR (PFG NMR) spectroscopy and AFM show that β‐CD‐AmTNB formed a supramolecular polymer in aqueous solution through head‐to‐tail stacking. Although β‐CD‐AmTNB did not produce a hydrogel due to insufficient growth of supramolecular polymers, β‐CD‐CiAmTNB (Ci=cinnamoyl) formed supramolecular fibrils through host–guest interactions. Hydrogen bonds between the cross‐linked fibrils resulted in the hydrogel, which displayed excellent chemical‐responsive properties. Gel‐to‐sol transitions occurred by adding 1‐adamantane carboxylic acid (AdCA) or urea. 1H NMR and induced circular dichroism (ICD) spectra reveal that AdCA released the guest parts from the CD cavity and that urea acts as a denaturing agent to break the hydrogen bonds between CDs. The hydrogel was also destroyed by adding β‐CD, which acts as the competitive host to reduce the fibrils. Furthermore, the gel changed to a sol by adding methyl orange (MO) as a guest compound, but the gel reappeared upon addition of α‐CD, which is a stronger host for MO.  相似文献   

17.
A new perovskite‐like coordination polymer [(CH3)2NH2][Cd(N3)3] is reported which undergoes a reversible ferroelastic phase transition. This transition is due to varied modes of motion of the [(CH3)2NH2]+ guest accompanied by a synergistic deformation of the [Cd(N3)3]? framework. The unusual two‐staged switchable dielectric relaxation reveals the molecular dynamics of the polar cation guest, which are well controlled by the variable confined space of the host framework. As the material switches from the ferroelastic phase to the paraelastic phase, a remarkable increase of the rotational energy barrier is detected. As a result, upon heating at low temperature, this compound shows a notable change from a low to a high dielectric state in the ferroelastic phase. This thermoresponsive host–guest system may serve as a model compound for the development of sensitive thermoresponsive dielectric materials and may be key to understanding and modulating molecular/ionic dynamics of guest molecules in confined space.  相似文献   

18.
A novel thermoresponsive hydrogel with ion-recognition property was prepared via free-radical cross-linking copolymerization of N-isopropylacrylamide (NIPAM) with benzo-18-crown-6-acrylamide (BCAm) as host receptor. Both chemical structures and stimuli-sensitive properties of the prepared poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) P(NIPAM-co-BCAm) hydrogel were characterized. The smart hydrogel could respond to both temperature and ion stimuli. When the crown ether units captured Ba2+ and formed stable BCAm/Ba2+ host-guest complexes, the lower critical solution temperature (LCST) of the hydrogel increased due to the repulsion among charged BCAm/Ba2+ complex groups and osmotic pressure within the hydrogel. Whereas crown ethers captured Cs+, the LCST shifted to a lower temperature because of the formation of 2:1 sandwich complexes. Unexpectedly, the LCST of the cross-linked P(NIPAM-co-BCAm) hydrogel in K+ solution did not shift to a higher temperature, which was definitely different from the previously reported linear P(NIPAM-co-BCAm) copolymer in K+ solution. The results of this work provide valuable information for development of dual thermo- and ion-responsive hydrogels which have potential applications in drug controlled-release systems or biomedical fields.  相似文献   

19.
Poly(ethylene glycol) (PEG) can form either the inclusion complex with α‐cyclodextrins (α‐CDs) through host–guest interactions or the interpolymer complex with poly(acrylic acid) (PAA) through hydrogen‐bonding interaction. Mixing α‐CD, PEG, and PAA ternary components in an aqueous solution, the competition between host–guest and hydrogen‐bonding interactions occurs. Increasing feed ratio of α‐CD:EG:AA from 0:1:1 to 0.2:1:1 (molar ratio), various interesting supramolecular polymer systems, such as hydrogen‐bonding complex, dynamic polyrotaxane, crystalline inclusion complex, and thermoresponsive hydrogel, are successively obtained. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1114–1120, 2008  相似文献   

20.
We report a thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM) brush functionalized Janus Au–Pt bimetallic micromotor capable of modulating the direction of motion with the change of the ambient temperature. The PNIPAM@Au–Pt micromotor moved along the Au–Pt direction with a speed of 8.5 μm s?1 in 1.5 % H2O2 at 25 °C (below the lower critical solution temperature (LCST) of PNIPAM), whereas it changed the direction of motion (i.e., along the Pt–Au direction) and the speed decreased to 2.3 μm s?1 at 35 °C (above LCST). Below LCST, PNIPAM brushes grafted on the Au side were hydrophilic and swelled, which permitted the electron transfer and proton diffusion on the Au side, and thus the motion is regarded as a self‐electrophoretic mechanism. However, PNIPAM brushes above LCST became hydrophobic and collapsed, and thus the driving mechanism switched to the self‐diffusiophoresis like that of Pt‐modified Janus silica motors. These motors could reversibly change the direction of motion with the transition of the hydrophobic and hydrophilic states of the grafted PNIPAM brushes. Such a thermoresponsive polymer brush functionalization method provides a new strategy for engineering the kinematic behavior of phoretically driven micro/nanomotors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号