首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two water‐soluble para‐xylylene‐connected 4,4′‐bipyridinium (BIPY2+) polymers have been prepared. UV‐Vis absorption, 1H NMR spectroscopy, and cyclic voltammetry experiments support that in water the BIPY2+ units in the polymers form stable 1:1 charge‐transfer complexes with tetrathiafulvalene (TTF) guests that bear two or four carboxylate groups. These charge‐transfer complexes are stabilized by the donor–acceptor interaction between electron‐rich TTF and electron‐deficient BIPY2+ units and electrostatic attraction between the dicationic BIPY2+ units and the anionic carboxylate groups attached to the TTF core. On the basis of UV‐Vis experiments, a lower limit to the apparent association constant of the TTF?BIPY2+ complexes of the mixtures, 1.8×106 m ?1, has been estimated in water. Control experiments reveal substantially reduced binding ability of the neutral TTF di‐ and tetracarboxylic acids to the BIPY2+ molecules and polymers. Moreover, the stability of the charge‐transfer complexes formed by the BIPY2+ units of the polymers are considerably higher than that of the complexes formed between two monomeric BIPY2+ controls and the dicarboxylate‐TTF donor; this has been attributed to the mutually strengthened electron‐deficient nature of the BIPY2+ units of the polymers due to the electron‐withdrawing effect of the BIPY2+ units.  相似文献   

2.
1,5-diaminonaphthalene (DAN) and bipyridinium (BIPY2+) were copolymerized into NP1 and NP2 linked by acylhydrazone bonds. The formed intramolecular charge-transfer (CT) complex drove the linear foldamers to adopt pleated folding conformation. Upon protonation of the DAN units by triflic acid (TFSA), the pleated folding conformation unfolded to linear structure because of electron repulsion. And this linear structure can be refolded to pleated structure by titrating with triethylamine (TEA). 1,5-dinaphtho[38]crown-10 (DN38C10) can encapsulate bipyridinium group on the polymers after protonation. These processes were supported by UV–vis and fluorescence spectroscopy studies.  相似文献   

3.
Compounds 1 a and 1 b were prepared by appending two tetrathiafulvalene (TTF) units to an aromatic amide segment that is driven by six or two intramolecular N? H???O hydrogen bonds to adopt a folded conformation. UV/Vis absorption experiments revealed that if the TTF units were oxidized to TTF.+ radical cations, the two compounds could form a stable single molecular noncovalent macrocycle in less polar dichloromethane or dichloroethane or a bimolecular noncovalent macrocycle in a binary mixture of dichloromethane with a more polar solvent owing to remarkably enhanced dimerization of the TTF.+ units. The stability of the (TTF.+)2 dimer was evaluated through UV/Vis absorption, electron paramagnetic resonance, and cyclic voltammetry experiments and also by comparing the results with those of control compound 2 . The results showed that introduction of the intramolecular hydrogen bonds played a crucial role in promoting the stability of the (TTF.+)2 dimer and thus the noncovalent macrocyclization of the two backbones in both uni‐ and bimolecular manners.  相似文献   

4.
The promiscuous encapsulation of π‐electron‐rich guests by the π‐electron‐deficient host, cyclobis(paraquat‐p‐phenylene) (CBPQT4+), involves the formation of 1:1 inclusion complexes. One of the most intensely investigated charge‐transfer (CT) bands, assumed to result from inclusion of a guest molecule inside the cavity of CBPQT4+, is an emerald‐green band associated with the complexation of tetrathiafulvalene (TTF) and its derivatives. This interpretation was called into question recently in this journal based on theoretical gas‐phase calculations that reinterpreted this CT band in terms of an intermolecular side‐on interaction of TTF with one of the bipyridinium (BIPY2+) units of CBPQT4+, rather than the encapsulation of TTF inside the cavity of CBPQT4+. We carried out DFT calculations, including solvation, that reveal conclusively that the CT band emerging upon mixing TTF with CBPQT4+ arises from the formation of a 1:1 inclusion complex. In support of this conclusion, we have performed additional experiments on a [2]rotaxane in which a TTF unit, located in the middle of its short dumbbell, is prevented sterically from interacting with either one of the two BIPY2+ units of a CBPQT4+ ring residing on a separate [2]rotaxane in a side‐on fashion. This [2]rotaxane has similar UV/Vis and 1H NMR spectroscopic properties with those of 1:1 inclusion complexes of TTF and its derivatives with CBPQT4+. The [2]rotaxane exists as an equimolar mixture of cis‐ and trans‐isomers associated with the disubstituted TTF unit in its dumbbell component. Solid‐state structures were obtained for both isomers, validating the conclusion that the TTF unit, which gives rise to the CT band, resides inside CBPQT4+.  相似文献   

5.
Since the advent of mechanically interlocked molecules (MIMs), many approaches to templating their formation using various different noncovalent bonding interactions have been introduced and explored. In particular, employing radical‐pairing interactions between BIPY.+ units, the radical cationic state of 4,4′‐bipyridinium (BIPY2+) units, in syntheses is not only a convenient but also an attractive source of templation because of the unique properties residing in the resulting catenanes and rotaxanes. Herein, we report a copper‐mediated procedure that enables the generation, in the MIM‐precursors, of BIPY.+ radical cations, while the metal itself, which is oxidized to CuI, catalyzes the azide–alkyne cycloaddition reactions that result in the efficient syntheses of two catenanes and one rotaxane, assisted by radical‐pairing interactions between the BIPY.+ radical cations. This procedure not only provides a fillip for making and investigating the properties of Coulombically challenged catenanes and rotaxanes, but it also opens up the possibility of synthesizing artificial molecular machines which operate away from equilibrium.  相似文献   

6.
We report the synthesis of two [2]catenane‐containing struts that are composed of a tetracationic cyclophane (TC4+) encircling a 1,5‐dioxynaphthalene (DNP)‐based crown ether, which bears two terphenylene arms. The TC4+ rings comprise either 1) two bipyridinium (BIPY2+) units or 2) a BIPY2+ and a diazapyrenium (DAP2+) unit. These degenerate and nondegenerate catenanes were reacted in the presence of Cu(NO3)2?2.5 H2O to yield Cu‐paddlewheel‐based MOF‐1050 and MOF‐1051. The solid‐state structures of these MOFs reveal that the metal clusters serve to join the heptaphenylene struts into grid‐like 2D networks. These 2D sheets are then held together by infinite donor–acceptor stacks involving the [2]catenanes to produce interpenetrated 3D architectures. As a consequence of the planar chirality associated with both the DNP and hydroquinone (HQ) units present in the crown ether, each catenane can exist as four stereoisomers. In the case of the nondegenerate (bistable) catenane, the situation is further complicated by the presence of translational isomers. Upon crystallization, however, only two of the four possible stereoisomers—namely, the enantiomeric RR and SS forms—are observed in the crystals. An additional element of co‐conformational selectivity is present in MOF‐1051 as a consequence of the substitution of one of the BIPY2+ units by a DAP2+ unit: only the translational isomer in which the DAP2+ unit is encircled by the crown ether is observed. The overall topologies of MOF‐1050 and MOF‐1051, and the selective formation of stereoisomers and translational isomers during the kinetically driven crystallization, provide evidence that weak noncovalent bonding interactions play a significant role in the assembly of these extended (super)structures.  相似文献   

7.
The ability to control the kinetic barriers governing the relative motions of the components in mechanically interlocked molecules is important for future applications of these compounds in molecular electronic devices. In this Full Paper, we demonstrate that bipyridinium (BIPY2+) dications fulfill the role as effective electrostatic barriers for controlling the shuttling and threading behavior for rotaxanes and pseudorotaxanes in aqueous environments. A degenerate [2]rotaxane, composed of two 1,5‐dioxynaphthalene (DNP) units flanking a central BIPY2+ unit in the dumbbell component and encircled by the cyclobis(paraquat‐p‐phenylene) (CBPQT4+) tetracationic cyclophane, has been synthesized employing a threading‐followed‐by‐stoppering approach. Variable‐temperature 1H NMR spectroscopy reveals that the barrier to shuttling of the CBPQT4+ ring over the central BIPY2+ unit is in excess of 17 kcal mol?1 at 343 K. Further information about the nature of the BIPY2+ unit as an electrostatic barrier was gleaned from related supramolecular systems, utilizing two threads composed of either two DNP units flanking a central BIPY2+ moiety or a central DNP unit flanked by a BIPY2+ moiety. The threading and dethreading processes of the CBPQT4+ ring with these compounds, which were investigated by spectrophotometric techniques, reveal that the BIPY2+ unit is responsible for affecting both the thermodynamics and kinetics of pseudorotaxane formation by means of an intramolecular self‐folding (through donor–acceptor interactions with the DNP unit), in addition to Coulombic repulsion. In particular, the free energy barrier to threading (Δ${G{{{\ne}\hfill \atop {\rm f}\hfill}}}The ability to control the kinetic barriers governing the relative motions of the components in mechanically interlocked molecules is important for future applications of these compounds in molecular electronic devices. In this Full Paper, we demonstrate that bipyridinium (BIPY(2+)) dications fulfill the role as effective electrostatic barriers for controlling the shuttling and threading behavior for rotaxanes and pseudorotaxanes in aqueous environments. A degenerate [2]rotaxane, composed of two 1,5-dioxynaphthalene (DNP) units flanking a central BIPY(2+) unit in the dumbbell component and encircled by the cyclobis(paraquat-p-phenylene) (CBPQT(4+)) tetracationic cyclophane, has been synthesized employing a threading-followed-by-stoppering approach. Variable-temperature (1)H?NMR spectroscopy reveals that the barrier to shuttling of the CBPQT(4+) ring over the central BIPY(2+) unit is in excess of 17 kcal mol(-1) at 343 K. Further information about the nature of the BIPY(2+) unit as an electrostatic barrier was gleaned from related supramolecular systems, utilizing two threads composed of either two DNP units flanking a central BIPY(2+) moiety or a central DNP unit flanked by a BIPY(2+) moiety. The threading and dethreading processes of the CBPQT(4+) ring with these compounds, which were investigated by spectrophotometric techniques, reveal that the BIPY(2+) unit is responsible for affecting both the thermodynamics and kinetics of pseudorotaxane formation by means of an intramolecular self-folding (through donor-acceptor interactions with the DNP unit), in addition to Coulombic repulsion. In particular, the free energy barrier to threading (ΔG(f)(++)) of the CBPQT(4+) for the case of the thread composed of a DNP flanked by two BIPY(2+) units was found to be as high as 21.7 kcal mol(-1) at room temperature. These results demonstrate that we can effectively employ the BIPY(2+) unit to serve as electrostatic barriers in water in order to gain control over the motions of the CBPQT(4+) ring in both mechanically interlocked and supramolecular systems.  相似文献   

8.
Two naphthalene(NP) and bipyridinium(BIPY~(2+)) alternately incorporated polymers P1 and P2 have been prepared through the formation of dynamic hydrazone bonds. The polymers formed NP–BIPY~(2+)donor–acceptor interaction-induced pleated secondary structure. Upon reducing the BIPY~(2+)units to radical cation BIPY+, intramolecular dimerization of the BIPY+units induced the backbones to afford another pleated secondary structure. Adding electron-rich macrocyclic polyether bis-1,5-dinaphtho[38]crown-10 or electron-deficient cyclobis(paraquat-p-phenylene) cyclophane did not break the first foldamer by complexing the BIPY2+or NP units of the polymers, whereas the di(radical cationic)ring of the second cyclophane could break the second foldamer by forming threading complexes with the BIPY+units of the polymers.  相似文献   

9.
The self‐assembly of a new type of three‐dimensional (3D) supramolecular polymers from tetrahedral monomers in both organic and aqueous media is described. We have designed and synthesized two tetraphenylmethane derivatives T1 and T2 , both of which bear four tetrathiafulvalene (TTF) units. When the TTF units were oxidized to the radical cation TTF.+, their pre‐organized tetrahedral arrangement remarkably enhanced their intermolecular dimerization, leading to the formation of new 3D spherical supramolecular polymers. The structure of the supramolecular polymers has been inferred on the basis of UV/Vis absorption, electron paramagnetic resonance, cyclic voltammetry, and dynamic light scattering (DLS) analysis, as well as by comparing these properties with those of the self‐assembled structures of mono‐, di‐, and tritopic control compounds. DLS experiments revealed that the spherical supramolecular polymers had hydrodynamic diameters of 68 nm for T1 (75 μM ) in acetonitrile and 105 nm for T2 (75 μM ) in water/acetonitrile (1:1). The 3D spherical structures of the supramolecular polymers formed in different solvents were also supported by SEM and AFM experiments.  相似文献   

10.
A computational study is performed to identify the origin of the room‐temperature stability, in aqueous solution, of functionalized π‐[R‐TTF]22+ dimers (TTF=tetrathiafulvalene; R=(CH2OCH2)5CH2OH) included in the cavity of a cucurbit[8]uril (CB[8]) molecule. π‐[R‐TTF]22+ dimers in pure water are weakly stable, and are mostly dissociated at room temperature. Upon addition of CB[8] to an aqueous π‐[R‐TTF]22+ solution, a (π‐[R‐TTF]2?CB[8])2+ inclusion complex is formed. The same complex is obtained after the sequential inclusion of two [R‐TTF].+ monomers in the CB[8] molecule. Both processes are thermodynamically and kinetically allowed. π‐[R‐TTF]22+ dimers dissolved in pure water present a [TTF].+???[TTF].+ long, multicenter bond, similar to that already identified in π‐[TTF]22+ dimers dissolved in organic solvents. Upon their inclusion in CB[8], the strength and other features of the [TTF].+???[TTF].+ long, multicenter bond are preserved. The room temperature stability of the π‐[R‐TTF]22+ dimers included in CB[8] is shown to originate in the π‐[R‐TTF]22+???CB[8] interaction, the strength of which comes from a strongly attractive electrostatic component and a dispersion component. Such a dominant electrostatic term is caused by the strongly polarized charge distribution in CB[8], the geometrical complementarity of the π‐[R‐TTF]22+ and CB[8] geometries, and the amplifying effect of the 2+ charge in π‐[R‐TTF]22+.  相似文献   

11.
A new calix[4]arene 1 with tetrathiafulvalene (TTF), quinone, and crown ether units in the lower rim was designed and synthesized with the aim to investigate the possibility to tune the metal‐ion promoted electron transfer by coordination of the crown ether unit with additional metal ions. Both absorption and electron spin resonance (ESR) spectroscopic studies clearly indicate that electron transfer occurs efficiently from TTF to the quinone units in the presence of Sc3+/Pb2+/Zn2+. Moreover, the intramolecular electron transfer within 1 induced by Zn2+ can be switched off by addition of Na+ and further turned on by addition of either Sc3+ or Pb2+.  相似文献   

12.
The first three‐dimensional (3D) conductive single‐ion magnet (SIM), (TTF)2[Co(pdms)2] (TTF=tetrathiafulvalene and H2pdms=1,2‐bis(methanesulfonamido)benzene), was electrochemically synthesised and investigated structurally, physically, and theoretically. The similar oxidation potentials of neutral TTF and the molecular precursor [HNEt3]2[M(pdms)2] (M=Co, Zn) allow for multiple charge transfers (CTs) between the SIM donor [M(pdms)2]n? and the TTF.+ acceptor, as well as an intradonor CT from the pdms ligand to Co ion upon electrocrystallisation. Usually TTF functions as a donor, whereas in our system TTF is both a donor and an accepter because of the similar oxidation potentials. Furthermore, the [M(pdms)2]n? donor and TTF.+ acceptor are not segregated but strongly interact with each other, contrary to reported layered donor–acceptor electrical conductors. The strong intermolecular and intramolecular interactions, combined with CT, allow for relatively high electrical conductivity even down to very low temperatures. Furthermore, SIM behaviour with slow magnetic relaxation and opening of hysteresis loops was observed. (TTF)2[Co(pdms)2] ( 2‐Co ) is an excellent building block for preparing new conductive SIMs.  相似文献   

13.
The two molecular triads 1a and 1b consisting of a porphyrin (P) covalently linked to a fullerene (C60) electron acceptor and tetrathiafulvalene (TTF) electron‐donor moiety were synthesized, and their photochemical properties were determined by transient absorption and emission techniques. Excitation of the free‐base‐porphyrin moiety of the TTF−P2 H−C60 triad 1a in tetrahydro‐2‐methylfuran solution yields the porphyrin first excited singlet state TTF−1P2 H−C60, which undergoes photoinduced electron transfer with a time constant of 25 ps to give TTF−P2 H.+−C60.−. This intermediate charge‐separated state has a lifetime of 230 ps, decaying mainly by a charge‐shift reaction to yield a final state, TTF.+−P2 H−C60.−. The final state has a lifetime of 660 ns, is formed with an overall yield of 92%, and preserves ca. 1.0 eV of the 1.9 eV inherent in the porphyrin excited state. Similar behavior is observed for the zinc analog 1b . The TTF‐PZn.+−C60.− state is formed by ultrafast electron transfer from the porphyrinatozinc excited singlet state with a time constant of 1.5 ps. The final TTF.+−PZn−C60.− state is generated with a yield of 16%, and also has a lifetime of 660 ns. Although charge recombination to yield a triplet has been observed in related donor‐acceptor systems, the TTF.+−P−C60.− states recombine to the ground state, because the molecule lacks low‐energy triplet states. This structural feature leads to a longer lifetime for the final charge‐separated state, during which the stored energy could be harvested for solar‐energy conversion or molecular optoelectronic applications.  相似文献   

14.
A series of tetrathiafulvalene (TTF)‐annulated porphyrins, and their corresponding ZnII complexes, have been synthesized. Detailed electrochemical, photophysical, and theoretical studies reveal the effects of intramolecular charge‐transfer transitions that originate from the TTF fragments to the macrocyclic core. The incremental synthetic addition of TTF moieties to the porphyrin core makes the species more susceptible to these charge‐transfer (CT) effects as evidenced by spectroscopic studies. On the other hand, regular positive shifts in the reduction signals are seen in the square‐wave voltammograms as the number of TTF subunits increases. Structural studies that involve the tetrakis‐substituted TTF–porphyrin (both free‐base and ZnII complex) reveal only modest deviations from planarity. The effect of TTF substitution is thus ascribed to electronic overlap between annulated TTF subunits rather than steric effects. The directly linked thiafulvalene subunits function as both π acceptors as well as σ donors. Whereas σ donation accounts for the substituent‐dependent charge‐transfer transitions, it is the π‐acceptor nature of the appended tetrathiafulvalene groups that dominates the redox chemistry. Interactions between the subunits are also reflected in the square‐wave voltammograms. In the case of the free‐base derivatives that bear multiple TTF subunits, the neighboring TTF units, as well as the TTF ? + generated through one‐electron oxidation, can interact with each other; this gives rise to multiple signals in the square‐wave voltammograms. On the other hand, after metalation, the electronic communication between the separate TTF moieties becomes restricted and they act as separate redox centers under conditions of oxidation. Thus only two signals, which correspond to TTF . + and TTF2+, are observed. The reduction potentials are also seen to shift towards more negative values after metalation, a finding that is considered to reflect an increased HOMO–LUMO gap. To probe the excited‐state dynamics and internal CT character, transient absorption spectral studies were performed. These analyses revealed that all the TTF–porphyrins of this study display relatively short excited‐state lifetimes, which range from 1 to 20 ps. This reflects a very fast decay to the ground state and is consistent with the proposed intramolecular charge‐transfer effects inferred from the ground‐state studies. Complementary DFT calculations provide a mechanistic rationale for the electron flow within the TTF–porphyrins and support the proposed intramolecular charge‐transfer interactions and π‐acceptor effects.  相似文献   

15.
Four tetrathiafulvalene (TTF)‐annulated porphyrins 1 – 4 were synthesized and characterized. All contain a tetraphenylporphyrin (TPP) core onto which four, two, or one TTF subunits were annulated. Absorption and fluorescence spectroscopic studies together with electrochemical investigations reveal that interactions between the porphyrin system and the annulated TTF units take place in solution. The annulation of one or more TTF units to the porphyrin core has a profound effect on the reduction potentials associated with this latter framework, with positive shifts in the range of 0.105 to 0.355 V and 0.200 to 0.370 V for the first and second reduction potential, respectively, compared to the corresponding processes in the model compound TPP, 18 . The redox potentials for the first oxidation of the TTF units are considerably shifted in 4 (ΔEox1=+0.285 V) and 2 (ΔEox1=?0.140 V), whereas for 1 and 3 these potentials remain within the region expected for a normal TTF unit. Considerable changes in the second oxidation potential associated with the TTF subunits were seen for 2 (ΔEox1=?0.085) and 3 (ΔEox1=?0.175). The emission spectra of 1 – 4 revealed that the porphyrin fluorescence is almost quenched in the neutral state of the TTF‐annulated porphyrins, a finding that is consistent with substantial electron transfer taking place from the TTF subunits to the porphyrin core. Oxidation of the TTF unit(s) (TTF→TTF.+) present in 1 – 4 leads to the emission intensity being restored.  相似文献   

16.
Molecules capable of accepting and storing multiple electrons are crucial components of artificial photosynthetic systems designed to drive catalysts, such as those used to reduce protons to hydrogen. ExBox4+, a boxlike cyclophane comprising two π‐electron‐poor extended viologen units tethered at both ends by two p‐xylylene linkers, has been shown previously to accept an electron through space from a photoexcited guest. Herein is an investigation of an alternate, through‐bond intramolecular electron‐transfer pathway involving ExBox4+ using a combination of transient absorption and femtosecond stimulated Raman spectroscopy (FSRS). Upon photoexcitation of ExBox4+, an electron is transferred from one of the p‐xylylene linkers to one of the extended viologen units in ca. 240 ps and recombines in ca. 4 ns. A crystal structure of the doubly reduced species ExBox2+ was obtained.  相似文献   

17.
The properties of tetrathiafulvalene dimers ([TTF]22+) and the functionalized ring‐shaped bispropargyl (BPP)‐functionalized TTF dimers, [BPP–TTF]22+, found at room temperature in charged [3]catenanes, were evaluated by M06L calculations. The results showed that their isolated [TTF]22+ and [BPP–TTF]22+ dimers are energetically unstable towards dissociation. When enclosed in the 4+‐charged central cyclophane ring of charged [3]catenanes (CBPQT4+), [TTF]22+ and [BPP–TTF]22+ dimers are also energetically unstable with respect to leaving the CBPQT4+ ring; since the barrier for the exiting process is only about 3 kcal mol?1, that is, within the reach of thermal energies at room temperature (neutral [TTF]20 dimers are stable within the CBPQT4+ ring). However, the [BPP–TTF]22+ dimers in charged [3]catenanes cannot exit, because this would imply breaking the covalent bonds of the BPP–TTF+ macrocycle. Finally, it was shown that the [TTF]22+, [BPP–TTF]22+ dimers, and charged [3]catenanes are energetically stable in solution and in crystals of their salts, in the first case due to the interactions with the solvent, and in the second case mostly due to cation–anion interactions. In these environmental conditions at room temperature the TTF units of the [BPP–TTF]22+ dimers make short contacts, thus allowing their SOMO orbitals to overlap: a room‐temperature multicenter long bond is formed, similar to those previously found in other [TTF]22+ salts and their solutions.  相似文献   

18.
Two self‐assembled supramolecular donor–acceptor triads consisting of AlIII porphyrin (AlPor) with axially bound naphthalenediimide (NDI) as an acceptor and tetrathiafulvalene (TTF) as a secondary donor are reported. In the triads, the NDI and TTF units are attached to AlIII on opposite faces of the porphyrin, through covalent and coordination bonds, respectively. Fluorescence studies show that the lowest excited singlet state of the porphyrin is quenched through electron transfer to NDI and hole transfer to TTF. In dichloromethane hole transfer to TTF dominates, whereas in benzonitrile (BN) electron transfer to NDI is the main quenching pathway. In the nematic phase of the liquid crystalline solvent 4‐(n‐pentyl)‐4′‐cyanobiphenyl (5CB), a spin‐polarized transient EPR spectrum that is readily assigned to the weakly coupled radical pair TTF.+NDI.? is obtained. The initial polarization pattern indicates that the charge separation occurs through the singlet channel and that singlet–triplet mixing occurs in the primary radical pair. At later time the polarization pattern inverts as a result of depopulation of the states with singlet character by recombination to the ground state. The singlet lifetime of TTF.+NDI.? is estimated to be 200–300 ns, whereas the triplet lifetime in the approximately 350 mT magnetic field of the X‐band EPR spectrometer is about 10 μs. In contrast, in dichloromethane and BN the lifetime of the charge separation is <10 ns.  相似文献   

19.
The first three-dimensional (3D) conductive single-ion magnet (SIM), (TTF)2[Co(pdms)2] (TTF=tetrathiafulvalene and H2pdms=1,2-bis(methanesulfonamido)benzene), was electrochemically synthesised and investigated structurally, physically, and theoretically. The similar oxidation potentials of neutral TTF and the molecular precursor [HNEt3]2[M(pdms)2] (M=Co, Zn) allow for multiple charge transfers (CTs) between the SIM donor [M(pdms)2]n and the TTF.+ acceptor, as well as an intradonor CT from the pdms ligand to Co ion upon electrocrystallisation. Usually TTF functions as a donor, whereas in our system TTF is both a donor and an accepter because of the similar oxidation potentials. Furthermore, the [M(pdms)2]n donor and TTF.+ acceptor are not segregated but strongly interact with each other, contrary to reported layered donor–acceptor electrical conductors. The strong intermolecular and intramolecular interactions, combined with CT, allow for relatively high electrical conductivity even down to very low temperatures. Furthermore, SIM behaviour with slow magnetic relaxation and opening of hysteresis loops was observed. (TTF)2[Co(pdms)2] ( 2-Co ) is an excellent building block for preparing new conductive SIMs.  相似文献   

20.
Radical cations of bis(triarylamine)s, 3 and 4 , in which the triarylamine redox centers are bridged by an ortho ‐phenylene and ortho ‐carborane cluster, respectively, have been prepared to elucidate the difference in intramolecular charge/spin‐transfer (ICT/IST) pathway owing to the two different bridging units affording similar geometrical arrangements between the redox centers. Electrochemistry, absorption spectroscopy, VT‐ESR spectroscopy, and DFT calculations reveal that 3 .+ and 4 .+ are classified into class II and class I mixed‐valence systems, respectively, and therefore, through‐bond and through‐space mechanisms are dominant for the ICT/IST phenomena in 3 .+ and 4 .+, respectively. Moreover, SQUID measurements for dicationic species provide the fact that virtually no spin‐exchange interaction is observed for spins in 4 2+, while the antiferromagnetic interaction for spins in 3 2+, in accordance with the existence of a conjugation pathway for the ortho ‐phenylene bridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号