首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, the chitosan ternary nanocomposites with two-dimensional (2D) clay platelets and one-dimensional (1D) CNTs have been successfully prepared by a simple solution-intercalation/mixing method in acid media. It was found that the thermal degradation temperature of chitosan (at 50% weight loss) could be only improved in about 20-30 °C by adding 3 wt% either clay or CNTs, however, almost 80 °C increase of degradation temperature could be achieved by adding 2 wt% clay and 1 wt% CNTs together. Dynamic mechanical measurement demonstrated an obviously improved storage modulus for chitosan/clay-CNTs than that for the corresponding binary chitosan/clay or chitosan/CNT nanocomposites with the same total filler content (3 wt%). For the solvent vapor permeation properties, a largely improved benzene vapor barrier property was observed only in chitosan/clay-CNT ternary nanocomposites and depended on the ratio of clay to CNTs. XRD, SEM and TEM results showed that both clay and CNTs could be well dispersed in the ternary nanocomposites with the nanotubes located around the clay platelets. FTIR showed an improved interaction between the fillers and chitosan by using both clay and CNTs. A much enhanced solid-like behavior was observed in the ternary nanocomposites, compared with the corresponding binary nanocomposites with the same total filler content, as indicated by rheological measurement. The unique synergistic effect of two-dimensional (2D) clay platelets and one-dimensional (1D) CNTs on the property enhancement could be tentatively understood as due to a formation of much jammed filler network with 1D CNTs and 2D clay platelets combined together. Our work demonstrates a good example for the preparation of high performance polymer nanocomposites by using nanofillers with different dimensions together.  相似文献   

2.
In this paper, we review recent progress made in the field of epoxy-based binary and ternary nanocomposites containing three-, two-, and one-dimensional (i.e., 3D-, 2D-, and 1D) nano-size fillers with a special focus on their fracture behaviors. Despite investigations conducted so far to evaluate the crack-resistance of epoxy nanocomposites and attempts made to clarify the controlling toughening mechanisms of these materials, some questions remain unsolved. It is shown that silica nanoparticles can be as effective as rubber particles in improving the fracture toughness/energy; but incorporation of carbon nanotubes (CNTs) or clay platelets in epoxy matrices delays crack growth only modestly. The “nano” effects of silica (<25 vol.%) and rubber (>10 wt.%) nanoparticles in toughening epoxy resin are confirmed by comparison with silica and rubber micro-particles of the same loading. There is clear evidence of both synergistic and additive toughening effects in the silica/rubber/epoxy ternary nanocomposites. In addition, positive hybrid toughening effect has been observed in the nano-rubber/CNT/epoxy composites; however, a negative hybrid effect is predominant in nano-clay/nano-rubber/epoxy ternary nano-composites. Future research directions for epoxy-based nanocomposites towards multi-functional applications are discussed.  相似文献   

3.
刘天西  韦春 《高分子科学》2014,32(10):1276-1285
Synergistic effect in network formation of nylon-6 (PA6) nanocomposites containing one dimensional (ID) multi-walled carbon nanotubes (CNTs) and two dimensional (2D) layered double hydroxide (LDH) platelets on improving the mechanical properties has been studied. Mechanical tests show that, with incorporation of 1 wt% LDHs and 0.5 wt% CNTs, the tensile modulus, the yield strength as well as the hardness of the ternary composite are greatly improved by about 230%, 128% and 110% respectively, as compared with neat PA6. This is mainly attributed to the unique, strong interactions between the CNTs and the LDHs as well as the jammed network-like structure thus formed between the nanofillers, as confirmed by the morphological observations. As compared with the binary nanocomposites, a much enhanced solid-like behavior in the terminal region of the rheological curves can clearly be observed for the ternary system, which also indicates the formation of a percolating filler network.  相似文献   

4.
Polylactide (PLA)/clay nanocomposites have been prepared by in situ ring-opening polymerization in supercritical carbon dioxide. Depending on the type of organoclay used, polylactide chains can be grafted onto the clay surface, leading to an exfoliated morphology. Nanocomposites with high clay contents (30-50 wt.%), called masterbatches, have also been successfully prepared and were recovered as fine powders thanks to the unique properties of the supercritical fluid. Dilution of these masterbatches into commercial l-polylactide by melt blending has led to essentially exfoliated nanocomposites containing 3 wt.% of clay. The mechanical properties of these materials have been assessed by flexion and impact tests. Significant improvements of stiffness and toughness have been observed for the PLA/clay nanocomposites compared to the pure matrix, together with improved impact resistance.  相似文献   

5.
Several series of nanocomposites were prepared using a latex-based process, the main step of which consisted of mixing an aqueous suspension of exfoliated carbon nanotubes (CNTs) and a polymer latex. In the present work, a systematic study on the electrical properties of fully amorphous (polystyrene - PS) as well as semi-crystalline (isotactic polypropylene - iPP) nanocomposites containing either single-wall (SWCNTs) or multi-wall carbon nanotubes (MWCNTs) has been conducted. Percolation thresholds as low as 0.05 wt.% or 0.1 wt.% were observed for SWCNT/iPP and MWCNT/iPP nanocomposites, respectively. The formation of a conductive percolating network at such a low CNT concentration is favored by the high intrinsic conductivity and the low viscosity of the polymer matrix. The electrical percolation threshold of the iPP-based system was found to be lower than its rheological percolation threshold. Beyond the percolation threshold, MWCNT-based nanocomposites generally exhibited higher conductivity levels than those based on SWCNTs, most probably due to the higher intrinsic conductivity of the MWCNTs as compared to that of the SWCNTs. These excellent electrical properties, associated with the strong nucleating effect of the CNTs reported earlier [1] and [2], render this type of nanocomposites extremely attractive from a technological point of view.  相似文献   

6.
In this work, high storage modulus and high water stability of chitosan was prepared by incorporating chitosan-grafted carbon nanotubes (CNTs-g-CS). This dramatically improved mechanical property and water stability of chitosan would broaden its biochemical and electrochemical applications. The methodology adopted here by incorporating the CNTs-g-CS allowed a high amount of CNTs incorporation in chitosan without phase separations and enabled the preparations of a durable chitosan/CNTs nanocomposite-modified electrode for biosensor uses. The CNTs-g-CS was synthesized by grafting chitosan onto the carboxylated CNTs in acetic acid-added aqueous solution at 98 °C for 24 h. Thermal gravimetric analysis showed that the content of the chitosan grafts on the CNTs was about 25 wt% of the synthesized CNTs-g-CS. As compared with the ungrafted CNTs, the CNTs-g-CS exhibited a significantly improved dispersion in the chitosan matrix, as examined by optical microscopy and scanning electron microscopy, resulting in significantly improved storage modulus and water stability of the chitosan nanocomposites as revealed by dynamic mechanical analysis and water treatments data, respectively. The storage modulus was significantly up by 134% from 6.4 GPa for the pure chitosan to 15 GPa for the chitosan nanocomposite containing 40 wt% CNTs-g-CS. The water stability of the chitosan nanocomposite films was significantly up from less than 12 h for the chitosan containing various amounts of ungrafted CNTs to at least 48 h for the chitosan containing 20, 30, and 40 wt% CNTs-g-CS.  相似文献   

7.
Clay-containing polymeric nanocomposites (PNC) are mixtures of dispersed clay platelets in a polymeric matrix. These materials show enhancement of physical properties, such as modulus, strength, and dimensional stability, as well as a reduction of gas permeability and flammability. The performance is related to the degree of clay dispersion (i.e., intercalation or exfoliation) and the bonding between the clay and the matrix. The main goal of this work has been to map the degree of dispersion as a function of independent variables (viz., magnitude of the interaction parameters, molecular weights, composition, etc.). In this paper, we present the results of the numerical analysis of the equilibrium thermodynamic miscibility using one- and two-dimensional (1D and 2D) models based on the self-consistent mean-field theory. In the limit, the 2D model reproduced the 1D model published results. The adopted 2D model considers the presence of four PNC components: solid clay platelets, low molecular weight intercalant, polymeric matrix, and end-functionalized compatibilizer. The simulations, with realistic values of the binary interaction parameters, were analyzed for potential exfoliation of PNC with a polyolefin as the matrix. The simulation results show that intercalation and exfoliation is expected within limited ranges of the independent variables. The presence of a bare clay surface (e.g., generated by thermal decomposition of intercalant or extraction by molten polymer) has a strong negative effect on the dispersion process. The simulation successfully identified the most influential factors, e.g., optimum ranges of the compatibilizer and the intercalant concentration.  相似文献   

8.
Poly(trimethylene terephthalate) (PTT)/montmorillonite (MMT) nanocomposites were prepared by the solution intercalation method. Two different kinds of clay were organomodified with an intercalation agent of cetyltrimetylammonium chloride (CMC). X‐ray diffraction (XRD) indicated that the layers of MMT were intercalated by CMC, and interlayer spacing was a function of the cationic exchange capacity of clay. The XRD studies demonstrated that the interlayer spacing of organoclay in the nanocomposites depends on the amount of organoclay. From the results of differential scanning calorimetric analysis, it was found that clay behaves as a nucleating agent and enhances the crystallization rate of PTT. The maximum enhancement of the crystallization rate for the nanocomposites was observed in nanocomposites containing about 1 wt % organoclay with a range of 1–15 wt %. From thermogravimetric analysis, we found that the thermal stability of the nanocomposites was enhanced by the addition of 1–10 wt % organoclay. According to transmission electron microscopy, the organoclay particle was highly dispersed in the PTT matrix without a large agglomeration of particles for a low organoclay content (5 wt %). However, an agglomerated structure did form in the PTT matrix at a 15 wt % organoclay content. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2902–2910, 2003  相似文献   

9.
Nanocomposites from organoclay and aromatic polyamide were prepared using solution intercalation method. Aramid chains were synthesised by reacting 4-aminophenylsulfone with isophthaloyl chloride in dimethylacetamide. Dodecylamine was used as a modifier to change the hydrophilic nature of montmorillonite into organophilic. Suitable quantities of organoclay were mixed in the aramid solution with high-speed stirring for homogeneous dispersion of the clay. Thin films cast from these materials after evaporating the solvent were characterised. The morphology of nanocomposites was determined by X-ray diffraction and TEM. Results revealed the formation of delaminated and disordered intercalated clay platelets in the aramid matrix. Mechanical data indicated improvement in the tensile strength and modulus with clay loading up to 6 wt.%. The glass transition temperature increased up to 20 wt.% organoclay, suggesting better cohesion between the two phases and thermal stability augmented with increasing clay loading. The water uptake reduced gradually as a function of organoclay showing decreased permeability.  相似文献   

10.
Epoxy/clay nanocomposites are synthesized using clay modified with the organic modifier N,N‐dimethyl benzyl hydrogenated tallow quaternary ammonium salt (Cloisite 10A). The purpose is to investigate the influence of the clay concentration on the nanostructure, mainly on the free‐volume properties and the interfacial interactions, of the epoxy/clay nanocomposite. Nanocomposites having 1, 3, 5 and 7.5 wt. % clay concentrations are prepared using the solvent‐casting method. The dispersion of clay silicate layers and the morphologies of the fractured surfaces in the nanocomposites are studied using X‐ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The observed XRD patterns reveal an exfoliated clay structure in the nanocomposite with the lowest clay concentration (≤1 wt. %). The ortho‐positronium lifetime (τ3), a measure of the free‐volume size, as well as the fractional free volume (fv) are seen to decrease in the nanocomposites as compared to pristine epoxy. The intensity of free positron annihilation (I2), an index of the epoxy–clay interaction, decreases with the addition of clay (1 wt. %) but increases linearly at higher clay concentrations. Positron age‐momentum correlation measurements are also carried out to elucidate the positron/positronium states in pristine epoxy and in the nanocomposites. The results suggest that in the case of the nanocomposite with the studied lowest clay concentration (1 wt. %), free positrons are primarily localized in the epoxy–clay interfaces, whereas at higher clay concentrations, annihilation takes place from the intercalated clay layers.  相似文献   

11.
Thirty‐three polystyrene (PS)/acrylonitrile‐butadiene‐styrene (ABS) and high impact PS/ABS polymer blends with organoclay and copolymer additives were prepared by melt processing using different mixing sequences in order to test the putative capability of clay to perform a compatibilizing role in polymer blends. In general, the addition of clay increased the tensile modulus and had little effect on tensile strength. For the blends studied in this work, the addition of organoclays caused a catastrophic reduction in impact strength, a critical property for commercial viability. The polymer‐blend nanocomposites adopted a structure similar to that for ABS/clay nanocomposites as determined by X‐ray diffraction and transmission electron microscopy. It is suggested that clay reinforcement inhibits energy absorption by craze formation and shear yielding at high strain rates. Simultaneous mixing of the three components provided nanocomposites with superior elongation and energy to failure compared to sequential mixing. The clay pre‐treated with a benzyl‐containing surfactant gave the best overall properties among the various organoclays tested and of the two clay contents studied 4 wt % was preferred over 8 wt % addition. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

12.
This paper deals with the effect of different montmorillonite source clays, including pristine and organophilic montmorillonites, on the structure, morphology and properties of cellulose acetate (CA)/clay nanocomposites. In this study, the nanocomposites were prepared by melt extrusion in the presence of the environmentally friendly triethyl citrate plasticizer. The structure and morphology of the materials were analysed by X-ray diffraction and scattering (SAXS), X-ray microtomography and energy filtered transmission electron microscopy (EFTEM). SAXS and EFTEM results indicated that the nanocomposite morphologies were made up of tactoids together with exfoliated clay platelets in different proportions depending on the clay type. It can be concluded that well distributed clay tactoids and platelets can be achieved in CA nanocomposites prepared by melt extrusion and consequently property improvements can be found by using pristine or organophilic clays. In this case, the addition of a plasticizer, able to intercalate in the clay gallery, seems to be sufficient to promote the clay delamination mechanism under shearing inside the cellulose acetate matrix.  相似文献   

13.
聚合物基粘土纳米复合材料的流变行为研究   总被引:7,自引:0,他引:7  
聚合物基粘土纳米复合材料具有与常规颗粒填充体系类似的流变特性 :在整个频率范围内 ,储能模量和损耗模量均随粘土含量的增加而变高 ,其频率依赖性会表现出非未端行为 :且当粘土含量超过临界值以后 ,储能模量会在低频区表现出似固体的平台发展。但与之不同的是前者在低粘土含量的条件下 (<10 % (wt) )就会表现出似固体行为或非末端行为。这些流变特性还会受到粘土的径厚比、化学特性、聚合物基体的分子结构参数和粘土与基体间的相互作用强度等因素的影响。聚合物基粘土纳米复合材料的流变行为是与其微观结构的形成和演化以及聚合物分子链在特定环境下的粘弹松弛过程紧密联系在一起的。本文综述了插层型、剥离型和聚合物分子链一端受限剥离型聚合物基粘土纳米复合材料在力场作用下的流变特性和粘弹松弛机理方面的研究进展。  相似文献   

14.
In this study, carbon nanotubes (CNTs) were first modified using N,N′‐ dicyclohexylcarbodiimide (DCC) dehydrating agents. Subsequently, the poly(butylene succinate)/multiwalled carbon nanotube (PBS/MWNTs) nanocomposites were prepared through facile melt blending. Thermal degradation of these PBS/MWNT nanocomposites was investigated; the kinetic parameters of degradation were calculated using the Coats and Redfern, Ozawa, and Horowitz and Metzger methods, respectively. It was found that the degradation reaction mechanism of PBS and the CNT‐C18 containing nanocomposites at lower temperature was likely to produce an F1 model through reaction of random chain cleavage (cis‐elimination). However, the reaction mechanism at higher temperature was likely to be a D1 model because of the dominant diffusion control effect. Moreover, it was found that the activation energies of CNT‐C18‐containing PBS nanocomposites were first increased with the content of CNT‐C18, but then decreased after the content was larger than 0.5 wt % for all models at differing heating rates. This may be due to the formation of a conductive network of CNTs in the polymer matrix at higher content of CNTs, which lead to better heat and electrical conductivity. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1231–1239, 2009  相似文献   

15.
In this study, different modified polyethylenes with different molar masses and different modification rates were examined as compatibilizers to prepare high density polyethylene/organoclay nanocomposites. Nanocomposites having 5 wt % organo-modified clay and 20 wt % interfacial agent were prepared by melt blending. The effect of compatibilizer molar mass and polarity was investigated on the clay dispersion and on the gas barrier properties. It was observed that the amount of large and dense fillers aggregates was considerably reduced by introduction of an interfacial agent. The nanocomposite final morphology was governed by a diffusion/shear mechanism. A high degree of clay delamination was obtained with the high molar mass compatibilizers, whereas highly swollen clay aggregates resulted from the incorporation of the low molar mass interfacial agents. In the investigated nanocomposites series, the barrier properties could not be directly related to the clay dispersion state but resulted also from the matrix/clay interfacial interactions. A gas transport mechanism based on these both parameters was proposed to explain the barrier properties evolution in these low polar nanocomposites series. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2593–2604, 2008  相似文献   

16.
The synthesis of nanocomposites via emulsion polymerization was investigated using methyl methacrylate (MMA) monomer, 10 wt % montmorillonite (MMT) clay, and a zwitterionic surfactant octadecyl dimethyl betaine (C18DMB). The particle size of the diluted polymer emulsion was about 550 nm, as determined by light scattering, while the sample without clay had a diameter of about 350 nm. The increase in the droplet size suggests that clay was present in the emulsion droplets. X-ray diffraction indicated no peak in the nanocomposites. Transmission electron microscopy showed that emulsion polymerization of MMA in the presence of C18DMB and MMT formed partially exfoliated nanocomposites. Differential scanning calorimetry showed an increase of 18 degrees C in the glass transition temperature (Tg) of the nanocomposites. A dynamic mechanical thermal analyzer also verified a similar Tg increase, 16 degrees C, for the partially exfoliated nanocomposites over poly(methyl methacrylate) (PMMA). Thermogravimetric analysis indicated a 37 degrees C increase in the decomposition temperature for a 20 wt % loss. A PMMA nanocomposite with 10 wt % C18DMB-MMT was also synthesized via in situ polymerization. This nanocomposite was intercalated and had a Tg 10 degrees lower than the emulsion nanocomposite. The storage modulus of the partially exfoliated emulsion nanocomposite was superior to the intercalated structure at higher temperatures and to the pure polymer. The rubbery plateau modulus was over 30 times higher for the emulsion product versus pure PMMA. The emulsion technique produced nanocomposites of the highest molecular weight with a bimodal distribution. This reinstates that exfoliated structures have enhanced thermal and mechanical properties over intercalated hybrids.  相似文献   

17.
Summary: In this study, chitosan nanocomposite films were prepared using a solvent-casting method by incorporation of an organically modified montmorillonite (Cloisite 10A). The effect of filler concentration on the water vapor permeability, oxygen permeability, mechanical and thermal properties of the composite films was evaluated. The structure of nanocomposites and the state of intercalation of the clay were characterized by XRD. The water vapor permeability of pure chitosan films was measured as a function of relative humidity (RH). It was found that the permeability value increased with an increase in RH. The water vapor and gas permeability values of the composite films decreased significantly with increasing filler concentration. Permeation data was fitted to various phenomenological models predicting the permeability of polymer systems filled with nanoclays as a function of clay concentration and aspect ratio of nanoplatelets. According to the XRD results, an increase in basal spacing was obtained with respect to pure clay for chitosan/clay nanocomposites. This demonstrated the formation of intercalated structure of clay in the polymer matrix. Tensile strength and elongation at break of the composites increased significantly with the addition of clay, however the thermal and color properties of the films were not much affected by the intercalation of clay into polymer matrix.  相似文献   

18.
In order to reduce the pollutants of environment and electromagnetic waves, environment friendly polymer foams with outstanding electromagnetic interference shielding are imminently required. In this paper, a kind of electromagnetic shielding, biodegradable nanocomposite foam was fabricated by blending poly (butylene succinate) (PBS) with carbon nanotubes (CNTs) followed by foaming with supercritical CO2. The crystallization temperature and melting temperature of PBS/CNTs nanocomposites with 4 wt % of CNTs increased remarkably by 6 °C and 3.1 °C compared with that of pure PBS and a double crystal melting peak of various PBS samples appeared in DSC curves. Increasing the CNT content from 0 to 4 wt % leads to an increase of approximately 3 orders of magnitude in storage modulus and nearly 9 orders of magnitude in enhancement of electrical properties. Furthermore, CNTs endowed PBS nanocomposite foam with adjustable electromagnetic interference (EMI) shielding property, giving a specific EMI shielding effectiveness of 28.5 dB cm3/g. This study provides a promising methodology for preparing biodegradable, lightweight PBS/CNTs foam with outstanding electromagnetic shielding properties.  相似文献   

19.
The evolution and the origin of "solid-like state" in molten polymer/clay nanocomposites are studied. Using polypropylene/clay hybrid (PPCH) with sufficient maleic anhydride modified PP (PP-MA) as compatibilizer, well exfoliation yet solid-like state was achieved after annealing in molten state. Comprehensive linear viscoelasticity and non-linear rheological behaviors together with WAXD and TEM are studied on PPCH at various dispersion stages focusing on time,temperature and deformation dependencies of the "solid-like" state in molten nanocomposites. Based on these, it is revealed that the solid-structure is developed gradually along with annealing through the stages of inter-layer expansion by PP-MA,the diffusion and association of exfoliated silicate platelets, the formation of band/chain structure and, finally, a percolated clay associated network, which is responsible for the melt rigidity or solid-like state. The network will be broken down by melt frozen/crystallization and weakened at large shear or strong flow and, even more surprisingly, may be disrupted by using trace amount of silane coupling agent which may block the edge interaction of platelets. The solid-like structure causes characteristic non-linear rheological behaviors, e.g. residual stress after step shear, abnormal huge stress overshoots in step flows and, most remarkably, the negative first normal stress functions in steady shear or step flows. The rheological and structural arguments challenge the existing models of strengthened entangled polymer network by tethered polymer chains connecting clay particles or by chains in confined melts or frictional interaction among tactoids. A scheme of percolated networking of associated clay platelets, which may in band form of edge connecting exfoliated platelets, is suggested to explain previous experimental results.  相似文献   

20.
The evolution and the origin of “solid-like state” in molten polymer/clay nanocomposites are studied. Using polypropylene/clay hybrid (PPCH) with sufficient maleic anhydride modified PP (PP-MA) as compatibilizer, well exfoliation yet solid-like state was achieved after annealing in molten state. Comprehensive linear viscoelasticity and non-linear rheological behaviors together with WAXD and TEM are studied on PPCH at various dispersion stages focusing on time,temperature and deformation dependencies of the “solid-like” state in molten nanocomposites. Based on these, it is revealed that the solid-structure is developed gradually along with annealing through the stages of inter-layer expansion by PP-MA,the diffusion and association of exfoliated silicate platelets, the formation of band/chain structure and, finally, a percolated clay associated network, which is responsible for the melt rigidity or solid-like state. The network will be broken down by melt frozen/crystallization and weakened at large shear or strong flow and, even more surprisingly, may be disrupted by using trace amount of silane coupling agent which may block the edge interaction of platelets. The solid-like structure causes characteristic non-linear rheological behaviors, e.g. residual stress after step shear, abnormal huge stress overshoots in step flows and, most remarkably, the negative first normal stress functions in steady shear or step flows. The rheological and structural arguments challenge the existing models of strengthened entangled polymer network by tethered polymer chains connecting clay particles or by chains in confined melts or frictional interaction among tactoids. A scheme of percolated networking of associated clay platelets, which may in band form of edge connecting exfoliated platelets, is suggested to explain previous experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号