首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, porous sandwich structure Fe3O4 nanoparticles coated by polyhedral oligomeric silsesquioxanes and β‐cyclodextrin were prepared by surface polymerization and were used as the magnetic solid phase extraction adsorbent for the extraction and determination of carbaryl and carbofuran. The Fe3O4 nanoparticles coated with polyhedral oligomeric silsesquioxanes and β‐cyclodextrin were characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, vibrating sample magnetometry, and scanning electron microscopy. After optimizing the extraction conditions, a method that combined magnetic solid phase extraction with high‐performance liquid chromatography was developed for the determination of carbaryl and carbofuran in apple. The method exhibited a good linearity in the range of 2–400 μg/kg for carbaryl and carbofuran (R= 0.9995), respectively. The limits of detection were 0.5 μg/kg of carbaryl and 0.7 μg/kg for carbofuran in apple, respectively. Extraction recoveries ranged from 94.2 to 103.1% with the preconcentration factor of 300 and the relative standard deviations were less than 5.9%. These results indicated that the method combined magnetic solid phase extraction with high‐performance liquid chromatography and was promising for the determination of carbaryl and carbofuran at trace amounts.  相似文献   

2.
《Electroanalysis》2018,30(3):402-414
A sensitive electrochemical immunosensor for Hepatitis B virus surface antigen (HBsAg) detection was fabricated based on hemin/G‐quadruplex interlaced onto Fe3O4‐AuNPs or hemin ‐amino‐reduced graphene oxide nanocomposite (H‐amino‐rGO‐Au). G‐quadruplex DNAzyme, which is composed of hemin and guanine‐rich nucleic acid, is an effective signal amplified tool for its outstanding peroxidase activity and Fe3O4‐AuNPs or (H‐amino‐rGO‐Au) nanocomposites with quasi‐enzyme activity provide appropriate support for the immobilization of hemin/G‐quadruplex. The target protein was sandwiched between the primary antibody immobilized on the GO and secondary antibody immobilized on the Fe3O4‐AuNPs or (H‐amino‐rGO‐Au) nanocomposites and glutaraldehyde was used as linking agent for the immobilization of primary antibody on the surface of GO. Both Fe3O4‐AuNPs and H‐amino‐rGO‐Au nanocomposite and also hemin/G‐quadruplex can cooperate the electrocatalytic reduction of H2O2 in the presence of methylene blue as mediator. The proposed immunosensor has a wide linear dynamic range of 0.1 pg/ml to 300 pg/ml with a detection limit of 60 fg/ml when Fe3O4‐AuNPs was used for immobilization of hemin/G‐quadruplex, while the dynamic range and DL were 0. 1–1000 pg/mL and 10 fg/mL, respectively in the presence of H‐amino‐rGO‐ Au nanocomposite as platform for immobilizing of hemin/G‐quadruplex. The proposed immunosensor was also used for analysis of HBsAg in spiked human serum samples with satisfactory results.  相似文献   

3.
An amino‐functionalized silica‐coated Fe3O4 nanocomposite (Fe3O4@SiO2/APTS) was synthesized. The Fe3O4@SiO2 microspheres possessed a well‐defined core–shell structure, uniform sizes and high magnetization. An immobilized ruthenium nanoparticle catalyst (Fe3O4@SiO2/APTS/Ru) was obtained after coordination and reduction of Ru3+ on the Fe3O4@SiO2/APTS nanocomposite. The Ru nanoparticles were not only ultra‐small with nearly monodisperse sizes but also had strong affinity with the surface of Fe3O4@SiO2/APTS. The obtained catalyst exhibited excellent catalytic performance for the hydrogenation of a variety of aromatic nitro compounds, even at room temperature. Moreover, Fe3O4@SiO2/APTS/Ru was easily recovered using a magnetic field and directly reused for at least five cycles without significant loss of its activity.  相似文献   

4.
Wu Q  Zhao G  Feng C  Wang C  Wang Z 《Journal of chromatography. A》2011,1218(44):7936-7942
A graphene-based magnetic nanocomposite was synthesized and used for the first time as an effective adsorbent for the preconcentration of the five carbamate pesticides (metolcarb, carbofuran, pirimicarb, isoprocarb and diethofencarb) in environmental water samples prior to high performance liquid chromatography-diode array detection. The properties of the magnetic nanocomposite were characterized by scanning electron microscopy and X-ray diffraction. This novel graphene-based magnetic nanocomposite showed great adsorptive ability towards the analytes. The method, which takes the advantages of both nanoparticle adsorption and magnetic phase separation from the sample solution, could avoid some of the time-consuming experimental procedures related to the traditional solid phase extraction. Various experimental parameters that could affect the extraction efficiencies have been investigated. Under the optimum conditions, the enrichment factors of the method for the analytes were in the range from 474 to 868. A linear response was achieved in the concentration range of 0.1-50 ng mL(-1). The limits of detection of the method at a signal to noise ratio of 3 for the pesticides were 0.02-0.04 ng mL(-1). Compared with the dispersive liquid-liquid microextraction and the ultrasound-assisted surfactant-enhanced emulsification microextraction, much higher enrichment factors and sensitivities were achieved with the developed method. The method has been successfully applied for the determination of the carbamate pesticides in environmental water samples.  相似文献   

5.
We present a facile strategy to prepare the molecularly imprinted polymers layer on the surface of Fe3O4 nanoparticles with core‐shell structure via sol–gel condensation for recognition and enrichment of triclosan. The Fe3O4 nanoparticles were first synthesized by a solvothermal method. Then, template triclosan was self‐assembled with the functional monomer 3‐aminopropyltriethoxysilane on the silica‐coated Fe3O4 nanoparticles in the presence of ethanol and water. Finally, the molecularly imprinted polymers were formed on the surface of silica‐coated Fe3O4 nanoparticles to obtain the product. The morphology, magnetic susceptibility, adsorption, and recognition property of magnetic molecularly imprinted polymers were characterized using transmission electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffractometry, vibrating sample magnetometry, and re‐binding experiments. The magnetic molecularly imprinted polymers showed binding sites with good accessibility, fast adsorption rate, and high adsorption capacity (218.34 μg/g) to triclosan. The selectivity of magnetic molecularly imprinted polymers was evaluated by the rebinding capability of triclosan and two other structural analogues (phenol and p‐chlorophenol) in a mixed solution and good selectivity with an imprinting factor of 2.46 was obtained. The application of triclosan removal in environmental samples was demonstrated.  相似文献   

6.
This study describes the preparation of a nanocomposites fabricated from monodispersed 4‐nm iron oxide (Fe3O4) coated on the surface of carboxylic acid containing multi‐walled carbon nanotube (c‐MWCNT) and polypyrrole (PPy) by in situ chemical oxidative polymerization. High‐resolution transmission electron microscopy images and X‐ray diffraction (XRD) data indicate that the resulting Fe3O4 nanoparticles synthesized using the thermal decomposition are close to spherical dots with a particle size about 4 ± 0.2 nm. The resulting nanoparticles were further mixed with c‐MWCNT in an aqueous solution containing with anionic surfactant sodium bis(2‐ethylhexyl) sulfosuccinate to form one‐dimensional Fe3O4 coated c‐MWCNT template for further preparation of nanocomposite. Structural and morphological analysis using field‐emission scanning electron microscopy, high‐resolution transmission electron microscopy, and XRD showed that the fabricated Fe3O4 coated c‐MWCNT/PPy nanocomposites are one‐dimensional core (Fe3O4 coated c‐MWCNT)‐shell (PPy) structures. The conductivities of these Fe3O4 coated c‐MWCNT/PPy nanocomposites are about four times higher than those of pure PPy matrix. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 727–733, 2008  相似文献   

7.
A novel and efficient sample preconcentration technique based on the Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) coated with silica (SiO2) has been developed for extraction and determination of sulpiride. The functionalized MNPs showed excellent dispersibility in aqueous solution and were applied to magnetic solid‐phase extraction of sulpiride from human urine and blood prior to high‐performance liquid chromatography analysis. The separation, preconcentration and desorption procedure was completed in 10 min. Optimal experimental conditions, including sample pH, the amount of the MNPs, eluent type and volume, and the ultrasonication time were studied and established. The method showed good linearity for the determination of sulpiride in the concentration range of 10–1000 ng/mL in urine and blood. The recovery of the method was in the range between 91.2 and 97.5%, and the limit of detection was 2 ng/mL for sulpiride in human blood and urine. The results indicated that the present procedure is a suitable pretreatment method for biological samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In that work, we have described the synthesis of novel Cu NPs decorated polyethylene glycol (PEG2000) coated magnetic nanoparticles (Fe3O4/PEG2000/Cu NPs) in an eco-friendly pathway applying Green Tea extract as reducing/stabilizing agent. The morphological and physicochemical features of the prepared nanocomposite were determined using several advanced techniques like ICP-OES, FE-SEM, EDX, atomic mapping, TEM, VSM, and XRD studies. In the antioxidant test, the IC50 of Fe3O4/PEG2000/Cu nanocomposite and BHT against DPPH free radicals were 198 and 85 µg/mL, respectively. In the cellular and molecular part of the recent study, the treated cells with Fe3O4/PEG2000/Cu nanocomposite were assessed by MTT assay for 48 h about the cytotoxicity and anti-human gastric cancer properties on normal (HUVEC) and gastric cancer cell lines i.e. NCI-N87 and MKN45. The IC50 of Fe3O4/PEG2000/Cu nanocomposite were 316 and 131 µg/mL against NCI-N87 and MKN45 cell lines, respectively. The viability of malignant gastric cell line reduced dose-dependently in the presence of Fe3O4/PEG2000/Cu nanocomposite. It seems that the anti-human gastric cancer effect of recent nanoparticles is due to their antioxidant effects.  相似文献   

9.
In this study, an eco-friendly and low-cost procedure for the synthesis of Rubia Tinctorum plant extract modified magnetic nanocomposite (RT/Fe3O4) has been demonstrated. Au nanoparticles (Au NPs) were further decorated in situ over the designed RT/Fe3O4 nanocomposite exploiting the plant derived phytochemicals as bio-reductant and stabilizer. The resulting Au NPs@RT/Fe3O4 nanocomposite was characterized by various analytical methods like Field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), energy dispersive X-ray analysis (EDX) elemental mapping, transmission electron microscopy (TEM), vibrating-sample magnetometer (VSM), X-ray diffraction analysis (XRD), and inductively coupled plasma-atomic emission spectrometry (ICP-AES) analysis. The Au NPs@RT/Fe3O4 nanocomposite has been explored biologically in the anticancer and antioxidant assays. In the antioxidant test, the IC50 of Au NPs@RT/Fe3O4 nanocomposite and butylated hydroxytoluene (BHT) against 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals were 155 and 129 µg/ml, respectively. In the cellular and molecular part of the recent study, the treated cells with Au NPs@RT/Fe3O4 nanocomposite were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay for 48 h about the cytotoxicity and anti-human colon carcinoma properties on normal (HUVECs), colorectal adenocarcinoma (HT-29), colorectal carcinoma (HCT 116), ileocecal colorectal adenocarcinoma (HCT-8 [HRT-18]), and Burkitt's lymphoma (Ramos.2G6.4C10) cell lines. The viability of malignant colon cell line reduced dose-dependently in the presence of Au NPs@RT/Fe3O4 nanocomposite. The IC50 of Au NPs@RT/Fe3O4 nanocomposite were 250, 256, 212, and 197 µg/ml against Ramos.2G6.4C10, HCT-8 [HRT-18], HCT 116, and HT-29 cell lines, respectively.  相似文献   

10.
Designed nitrogen and sulfur co‐doped graphene wrapped magnetic core‐shell supported Pd nanoparticles were synthesized through the following steps. Firstly, Fe3O4 was prepared, coated with silica and then functionalized with amine groups to create a positive charge on the structure for enhancing the interaction of the Fe3O4@SiO2 with graphene oxide. Secondary, the pre‐catalyst wrapped with graphene to enhance adsorption of aromatic substrates through π–π stacking. Thirdly, graphene was doped with nitrogen and sulfur to increase the grafting of Pd in hybrid. Finally, Pd NPs were attached on the surface of pre‐engineered structure to produce Fe3O4@SiO2@N,S‐wG@Pd which exhibited high performance in Suzuki reactions. This superior activity can be indexed to the incorporation of N and S atoms into graphene led to high anchoring and well‐dispersion of Pd NPs on the nanocomposite surface offering large amounts of active centers, that strongly increased the interaction between Pd and substrates to decreases Pd leaching.  相似文献   

11.
A novel sandwich‐type electrochemiluminescence (ECL) immunosensor was developed to enable the sensitive detection of HIV‐1 antibodies. This system incorporated mesoporous silica (mSiO2) complexed with quantum dots (QDs) and nano‐gold particles, which were assembled to enhance signal detection. Magnetic beads were used by immobilizing the secondary anti‐IgG antibody. This was first employed to capture HIV‐1 antibody (Ab) to form a Fe3O4/anti‐IgG/Ab complex. A high loading and signal‐enhanced nanocomposite (hereafter referred to as Au‐mSiO2‐CdTe) was used as a HIV‐1 antigen label. The Au‐mSiO2‐CdTe nanocomposite was conjugated with the Fe3O4/anti‐IgG/Ab complex to form an immunocomplex (hereafter referred to as Fe3O4/anti‐IgG/Ab/HIV‐1/CdTe‐mSiO2‐Au). This complex could be further separated by an external magnetic field to produce ECL signals. Due to the large specific surface area and pore volume of mSiO2, the loading of the CdTe QDs was markedly increased. Thus, the loaded QDs released a powerful chemiluminescent signal with a concordantly increased sensitivity of the immunosensor. The immunosensor was highly sensitive, and displayed a linear range of responses for HIV‐1 antibody across a dilution range of 1 : 1500 through 1 : 50 with the detection limit of 1 : 4500. The immunoassay can be a promising candidate in early diagnosis of HIV infection.  相似文献   

12.
Based on the strong adsorption of the diphosphate group to Fe and Al ions, first, the Fe3O4 and Al (OH)3 nanoparticles were modified by alendronate sodium (ALN), and organic phosphorus coated nanoparticles (Fe3O4‐ALN and Al (OH)3‐ALN) with the active group ─NH2 were prepared. Novel [xFe3O4–2xAl(OH)3]/waterborne polyurethane nanocomposite with superparamagnetism and excellent flame retardancy were prepared by in situ polymerization. The experimental results showed that when the content of Fe3O4‐ALN increased, the Ms increased. And the saturation magnetization reached 14.35 emu/g when the Fe3O4‐ALN content was 10 wt%. The nanoparticle network formed by Fe3O4 and Al (OH)3 can prevent the melting deformation of waterborne polyurethane (WPU) composite film and reduce the burning area. And the dual physical protective layer formed by nanoparticle network and char layer can prevent the combustible gas contacting with oxygen and giving off combustion heat, which effectively reduced the heat and smoke gas release. When the content of xFe3O4–2xAl(OH)3 was 20 wt%, the oxygen index of the composite was 28.4%, and the flame retardancy of nanocomposite was classified as V‐0 rating in the UL‐94 test.  相似文献   

13.
A magnetic solid‐phase extraction adsorbent that consisted of citrus peel‐derived nanoporous carbon and silica‐coated Fe3O4 microspheres (C/SiO2@Fe3O4) was successfully fabricated by co‐precipitation. As a modifier for magnetic microspheres, citrus peel‐derived nanoporous carbon was not only economical and renewable for its raw material, but exerted enormous nanosized pore structure, which could directly influence the type of adsorbed analytes. The C/SiO2@Fe3O4 also possessed the advantages of Fe3O4 microspheres like superparamagnetism, which could be easily separated magnetically after adsorption. Integrating the superior of biomass‐derived nanoporous carbon and Fe3O4 microspheres, the as‐prepared C/SiO2@Fe3O4 showed high extraction efficiency for target analytes. The obtained material was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and the Brunauer–Emmett–Teller method, which demonstrated that C/SiO2@Fe3O4 was successfully synthesized. Under the optimal conditions, the adsorbent was selected for the selective adsorption of seven insecticides before gas chromatography with mass spectrometry detection, and good linearity was obtained in the concentration range of 2–200 μg/kg with the correlation coefficient ranging from 0.9952 to 0.9997. The limits of detection were in the range of 0.03–0.39 μg/kg. The proposed method has been successfully applied to the enrichment and detection of seven insecticides in real vegetable samples.  相似文献   

14.
To extract, preconcentrate and determine the trace level of environmental contaminants, a novel mixed hemimicelles solid‐phase extraction (MHSPE) method based on mesoporous silica‐coated magnetic nanoparticles (Fe3O4/meso‐SiO2 NPs) as adsorbent was developed for extraction of phthalate esters from water samples. The Fe3O4/meso‐SiO2 NPs were synthesized by using a combination of hydrothermal method and sol‐gel method. The obtained Fe3O4/meso‐SiO2 NPs possessed a large surface area (570 m2/g), superparamagnetism, and uniform mesopores (2.8 nm). MHSPE parameters, such as the amount of surfactant, pH of sample, shaking and separation time, eluent and breakthrough volume that may influence the extraction of analytes greatly, were further investigated. Under the optimized conditions, the extraction was completed in 20 min and a concentration factor of 500 was achieved by extracting 250 mL water sample. Detection limits obtained of butyl‐benzyl phthalate (BBP), di‐n‐butyl phthalate (DnBP), di‐(2‐ethylhexyl) phthalate (DEHP) and di‐n‐cotyl phthalate (DnOP) were 12, 21, 12, and 32 ng/L, respectively. The proposed method exhibited high extraction efficiency and relatively short time for extracting the target compounds.  相似文献   

15.
《中国化学会会志》2018,65(5):523-530
Polyethylene glycol‐(N‐methylimidazolium) hydroxide‐grafted hydroxyapatite encapsulated γ‐Fe2O3 nanoparticles, γ‐Fe2O3@HAp@PEG(mim)OH, were prepared and characterized by FTIR, SEM, TEM, TGA, and EDAX. This nanocomposite was applied as a novel, green, nanomagnetic, and recyclable basic phase‐transfer catalyst for the synthesis of tetrahydrobenzopyrans in high yields via the three‐component reaction of aromatic aldehydes, malononitrile, and dimedone or 1,3‐cyclohexanedione in aqueous media at ambient temperature.  相似文献   

16.
A copper catalyst has been explored as an efficient and recyclable catalyst to effect Sonogashira and Suzuki cross‐coupling reactions. After modification of 2‐(((piperazin‐1‐ylmethyl)imino)methyl)phenol (PP) on the surface of amorphous silica‐coated iron oxide (Fe3O4@SiO2@Cl) magnetic core–shell nanocomposite, copper(II) chloride was employed to synthesize the Fe3O4@SiO2@PP‐Cu catalyst, affording a copper loading of 1.52 mmol g−1. High yield, low reaction times, non‐toxicity and recyclability of the catalyst are the main merits of this protocol. The catalyst was characterized using Fourier transform infrared, X‐ray photoelectron, energy‐dispersive X‐ray and inductively coupled plasma optical emission spectroscopies, X‐ray diffraction, scanning and transmission electron microscopies, and vibrating sample magnetometry.  相似文献   

17.
A general method to prepare functional (or multifunctional) nanoparticles/silica microsphere assemblies is reported in this article. A thin shell of polyglycidyl methacrylate is grafted on the surface of silica through surface-initiated atom transfer radical polymerization technique. And then, various types of nanoparticles, including water-soluble CdTe quantum dots, Au nanoparticles and oil-soluble Fe3O4 nanoparticles are assembled on silica microspheres, respectively, or simultaneously. The properties of the assembled nanoparticles are well retained in the nanocomposite assemblies, and the controllable integration of magnetic and fluorescent properties can be achieved through varying the proportion of different nanoparticles assembled on nanoparticle/silica microsphere.  相似文献   

18.
A novel ultrasound-assisted surfactant-enhanced emulsification microextraction (UASEME) coupled with high performance liquid chromatography-diode array detection has been developed for the extraction and determination of six carbamate pesticides (metolcarb, carbofuran, carbaryl, pirimicarb, isoprocarb and diethofencarb) in water samples. In the UASEME technique, Tween 20 was used as emulsifier, and chlorobenzene and chloroform were used as dual extraction solvent without using any organic dispersive solvent that is normally required in the previously described common dispersive liquid–liquid microextraction method. Parameters that affect the extraction efficiency, such as the kind and volume of the extraction solvent, the type and concentration of the surfactant, ultrasound emulsification time and salt addition, were investigated and optimized for the method. Under the optimum conditions, the enrichment factors were in the range between 170 and 246. The limits of detection of the method were 0.1–0.3 ng mL−1 and the limits of quantification were between 0.3 and 0.9 ng mL−1, depending on the compounds. The linearity of the method was obtained in the range of 0.3–200 ng mL−1 for metolcarb, carbaryl, pirimicarb, and diethofencarb, 0.6–200 ng mL−1 for carbofuran, and 0.9–200 ng mL−1 for isoprocarb, with the correlation coefficients (r) ranging from 0.9982 to 0.9998. The relative standard deviations varied from 3.2 to 4.8% (n = 5). The recoveries of the method for the six carbamates from water samples at spiking levels of 1.0, 10.0, 50.0 and 100.0 ng mL−1 were ranged from 81.0 to 97.5%. The proposed UASEME technique has demonstrated to be simple, practical and environmentally friendly for the determination of carbamates residues in river, reservoir and well water samples.  相似文献   

19.
In this study, a mixed hemimicelle solid‐phase extraction method based on Fe3O4 nanoparticles coated with sodium dodecyl sulfate was applied for the preconcentration and fast isolation of six fluoroquinolones in environmental water samples before high‐performance liquid chromatography determination. The main factors affecting the extraction efficiency of the analytes, such as amount of surfactant, amount of Fe3O4 nanoparticles, extraction time, sample volume, sample pH, ionic strength, and desorption conditions, were investigated and optimized. The method has detection limits from 0.05 to 0.1 ng/mL and good linearity (r ≥ 09948) in the range 0.1–200 ng/mL depending on the fluoroquinolone. The enrichment factor is ~200. The recoveries (at spiked levels of 1, 5, and 50 ng/mL) are in the range of 79–120%.  相似文献   

20.
A facile adsorbent, a nanocomposite of Fe3O4 and reduced graphene oxide, was fabricated for the selective separation and enrichment of synthetic aromatic azo colorants by magnetic solid‐phase dispersion extraction. The nanocomposite was synthesized in a one‐step reduction reaction and characterized by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X‐ray diffraction and Brunauer–Emmett–Teller analysis. The colorants in beverages were quickly adsorbed onto the surface of the nanocomposite with strong π–π interactions between colorants and reduced graphene oxide, and separated with the assistance of an external magnetic field. Moreover, the four colorants in beverages were detected at different wavelengths by high performance liquid chromatography with diode array detection. A linear dependence of peak area was obtained over 0.05–10 μg/mL with the limits of detection of 10.02, 11.90, 10.41, 15.91 ng/mL for tartrazine, allure red, amaranth, and new coccine, respectively (signal to noise = 3). The recoveries for the spiked colorants were in the range of 88.95–95.89% with the relative standard deviation less than 2.66%. The results indicated that the nanocomposite of Fe3O4 and reduced graphene oxide could be used as an excellent selective adsorbent for aromatic compounds and has potential applications in sample pretreatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号