首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A graphene-based magnetic nanocomposite (graphene-ferriferrous oxide; G-Fe(3) O(4) ) was synthesized and used as an effective adsorbent for the preconcentration of some triazole fungicides (myclobutanil, tebuconazole, and hexaconazole) in environmental water samples prior to high-performance liquid chromatography-ultraviolet detection. The method, which takes the advantages of both nanoparticle adsorption and magnetic phase separation from the sample solution, could avoid the time-consuming experimental procedures commonly involved in the traditional solid phase extraction such as centrifugation and filtrations. Various experimental parameters affecting the extraction efficiencies such as the amount of the magnetic nanocomposite, extraction time, the pH values of the sample solution, salt concentration, and desorption conditions were investigated. Under the optimum conditions, the enrichment factors of the method for the three analytes were 5824, 3600, and 4761, respectively. A good linearity was observed in the range of 0.1-50 ng/mL for tebuconazole and 0.05-50 ng/mL for myclobutanil and hexaconazole, respectively, with the correlation coefficients ranging from 0.9992 to 0.9996. The limits of detection (S/N = 3) of the method were between 0.005 and 0.01 ng/mL. The results indicated that as a magnetic solid-phase extraction adsorbent, the graphene-ferriferrous oxide (G-Fe(3) O(4) ) has a great potential for the preconcentration of some compounds from liquid samples.  相似文献   

2.
In this work, nanocomposites of reduced graphene oxide coated with ZnO were synthesized using a hydrothermal reduction strategy. Nanocomposite was then used as a sorbent for microextraction in a packed syringe, and its application to the extraction of carbamate pesticides from juice samples prior to high‐performance liquid chromatography detection was demonstrated. Factors affecting the enrichment efficiency of the microextraction in a packed syringe procedure were optimized, which included desorption conditions, sample pH, salting‐out effect, washing solution, and sample cycles. Under optimal conditions, the prepared materials exhibited excellent enrichment efficiency for carbamate pesticides. Good linearity existed in the concentration range of 0.5–200 ng/mL, with correlation coefficients of 0.9991–0.9997. The limits of detection of these carbamate pesticides were in the range of 0.23–1.21 ng/mL, and the average recoveries of the analytes at two spiked levels for real‐sample analysis ranged from 90.5 to 104.2% with relative standard deviations of 3.6–5.9%.  相似文献   

3.
In this paper, a novel magnetic solid-phase extraction method using three-dimensional graphene-based magnetic nanocomposite as adsorbent for the preconcentration of several chlorophenols from water samples prior to high-performance liquid chromatography analysis was developed. Various experimental parameters were investigated. Under the optimum conditions, the enrichment factors of the method were in the range of 186–312, and the limit of detection(S/N = 3) was 0.10 ng/mL. The recoveries of the method were in the range between 85.1% and 101.2%. The developed method has been successfully applied to the determination of chlorophenols in environmental water samples.  相似文献   

4.
A novel method for the determination of five carbamate pesticides(metolcarb,carbofuran,carbaryl,isoprocard and diethofencard)in water samples was developed by dispersive liquid-liquid microextraction(DLLME)coupled with high performance liquid chromatography-diode array detector(HPLC-DAD).Some experimental parameters that influence the extraction efficiency were studied and optimized to obtain the best extraction results.Under the optimum conditions for the method,the calibration curve was linear in the c...  相似文献   

5.
Zhang PP  Shi ZG  Feng YQ 《Talanta》2011,85(5):2581-2586
In this work, a two-step liquid-phase microextraction (LPME) method was presented for the extraction of phenols in environmental water samples. Firstly, the polar phenol in water samples (donor phase) was transferred to 1-octanol (extraction mesophase) by magnetic stirring-assisted LPME. Subsequently, target analytes in the 1-octanol was back extracted into 0.1 mol/L sodium hydroxide solution (acceptor phase) by vortex-assisted LPME. By combination of the two-step LPME, the enrichment factors were multiplied. The main features of this two-step LPME for phenols lie in the following aspects. Firstly, the extraction can be accomplished within relatively short time (ca. 20 min). Secondly, it was compatible with HPLC analysis, avoiding derivatization step that is generally necessary for GC analysis. Thirdly, high enrichment factors (296-954 fold) could be obtained for these analytes. Under the optimized conditions, the linearities were 10-1000, 1-500, 1-500, 5-500 and 1-500 ng/mL for different phenols with all regression coefficients higher than 0.9985. The limits of detection were in the range from 0.3 to 3.0 ng/mL for these analytes. Intra-and inter-day relative standard deviations were below 7.6%, indicating a good precision of the proposed method.  相似文献   

6.
An ultrasound-assisted surfactant-enhanced emulsification microextraction (UASEME) was developed as a new approach for the extraction of organophosphorus pesticides (OPs) in water samples prior to high-performance liquid chromatography with diode array detection (HPLC-DAD). The use of a surfactant as an emulsifier in the UASEME method could enhance the dispersion of water-immiscible extraction solvent into aqueous phase and is favorable for the mass-transfer of the analytes from aqueous phase to the organic phase. Several variables that affect the extraction efficiency, including the kind and volume of the extraction solvent, the type and concentration of the surfactant, salt addition, ultrasound emulsification time and temperature, were investigated and optimized. Under the optimum experimental conditions, the calibration curve was linear in the concentration range from 1 to 200 ng mL(-1) for the seven OPs (isocarbophos, phosmet, parathion, parathion-methyl, fenitrothion, fonofos and phoxim), with the correlation coefficients (r) varying from 0.9973 to 0.9998. High enrichment factors were achieved ranging from 210 to 242. The established UASEME-HPLC-DAD method has been successfully applied for the determination of the OPs in real water samples. The limits of detection were in the range between 0.1 and 0.3 ng mL(-1). The recoveries of the target analytes over the three spiked concentration levels of the compounds (10, 50, and 100 ng mL(-1), respectively) in rain, reservoir and well water samples were between 83% and 106% with the relative standard deviations varying from 3.3% to 5.6%.  相似文献   

7.
This paper described a new approach for the determination of organophosphorus pesticides by temperature-controlled ionic liquid dispersive liquid-phase microextraction prior to high-performance liquid chromatography with ultraviolet detection. Methylparathion and phoxim, two of the typical organophosphorus pesticides, were used as the model analytes for the investigation of the development and application of the new microextraction method. 1-Hexyl-3-methylimidazolium hexafluorophosphate [C6MIM][PF6] was used as the extraction solvent and the factors affecting the extraction efficiency such as the volume of [C6MIM][PF6], pH of working solutions, extraction time, centrifuging time, dissoluble temperature and salt effect were optimized. Under the optimal extraction conditions, methylparathion and phoxim exhibited good linear relationship in the concentration range of 1-100 ng mL(-1). The detection limits were 0.17 ng mL(-1) and 0.29 ng mL(-1), respectively. Precisions of proposed method (RSDs, n=6) were 2.5% and 2.7%, respectively. This proposed method was successfully applied in the analysis of four real environmental water samples and good spiked recoveries over the range of 88.2-103.6% were obtained. These results indicated that temperature-controlled ionic liquid dispersive liquid-phase microextraction had excellent application prospect in environmental field.  相似文献   

8.
A simple, rapid, and sensitive method for the determination of naproxen and ibuprofen in complex biological and water matrices (cow milk, human urine, river, and well water samples) has been developed using ultrasound‐assisted magnetic dispersive solid‐phase microextraction. Magnetic ethylendiamine‐functionalized graphene oxide nanocomposite was synthesized and used as a novel adsorbent for the microextraction process and showed great adsorptive ability toward these analytes. Different parameters affecting the microextraction were optimized with the aid of the experimental design approach. A Plackett–Burman screening design was used to study the main variables affecting the microextraction process, and the Box–Behnken optimization design was used to optimize the previously selected variables for extraction of naproxen and ibuprofen. The optimized technique provides good repeatability (relative standard deviations of the intraday precision 3.1 and 3.3, interday precision of 5.6 and 6.1%), linearity (0.1–500 and 0.3–650 ng/mL), low limits of detection (0.03 and 0.1 ng/mL), and a high enrichment factor (168 and 146) for naproxen and ibuprofen, respectively. The proposed method can be successfully applied in routine analysis for determination of naproxen and ibuprofen in cow milk, human urine, and real water samples.  相似文献   

9.
A simple and solvent-minimized sample preparation technique based on two-phase hollow fiber-protected liquid-phase microextraction has been developed and used for the determination of partition coefficient and analysis of selected pesticides in environmental water samples. The analysis was performed by gas chromatography–electron capture detector. Three pesticides namely hexaconazole, quinalphos, and methidathion were considered as target analytes. Extraction conditions such as solvent identity, salt concentration, stirring speed, extraction time, length of the hollow fiber, and volume of donor phase were optimized. The analytes were extracted from a donor phase (water sample) through 3 μL of an organic solvent immobilized in the pores of a porous polypropylene hollow fiber and then into the acceptor phase present inside the hollow fiber. Excellent extractions of the analytes were achieved under the optimized conditions, with relative standard deviations of 4.6–7.9%, correlation coefficients (r 2) of 0.9954–0.9986 and limits of detection of 3–7 ng L?1. The proposed method provided good average enrichment factors of up to 250-fold. The partition coefficients of the analytes determined were found to be directly correlated with the enrichment factor. The present methodology also confirms the robustness of microextraction for monitoring trace levels of pesticides in environmental water samples.  相似文献   

10.
Sodium dodecyl sulfate coated amino‐functionalized magnetic iron oxide nanoparticles were used as an efficient adsorbent for rapid removal and preconcentration of three important organophosphorus pesticides, chlorpyrifos, diazinon and phosalone, by ultrasound‐assisted dispersive magnetic solid‐phase microextraction. Fabrication of amino‐functionalized magnetic nanoparticles was certified by characteristic analyses, including Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and transmission electron microscopy. Affecting parameters on the removal efficiency were investigated and optimized through half‐fractional factorial design and Doehlert design, respectively. The analysis of analytes was performed by high‐performance liquid chromatography with ultraviolet detection. Under the optimum conditions, extraction recoveries for 20 ng/mL of organophosphorus pesticides were in the range of 84–97% with preconcentration factors in the range of 134–155. Replicating the experiment in above condition for five times gave the relative standard deviations <6%. The calibration curves showed high linearity in the range of 0.2–700 ng/mL and the limits of detection were in the range of 0.08–0.13 ng/mL. The proposed method was successfully applied for both removal and trace determination of these three organophosphorus pesticides in environmental water and fruit juice samples.  相似文献   

11.
Ionic liquid-based dispersive liquid-liquid microextraction was developed for the extraction and preconcentration of aromatic amine from environmental water. A suitable mixture of extraction solvent (100 μL, 1-butyl-3-methylimidazolium hexafluorophoshate) and dispersive solvent (750 μL, methanol) were injected into the aqueous samples (10.00 mL), forming a cloudy solution. After centrifuging, enriched analytes in the sediment phase were determined by HPLC-UV. The effect of various factors, such as the extraction and dispersive solvent, sample pH, extraction time and salt effect were investigated. Under optimum conditions, enrichment factors for 2-anilinoethanol, o-chloroaniline and 4-bromo-N,N-dimethylaniline were above 50 and the limits of detection (LODs) were 0.023, 0.015 and 0.026 ng/mL, respectively. Their linear ranges were 0.8-400 ng/mL for 2-anilinoethanol, 0.5-200 ng/mL for o-chloroaniline and 0.4-200 ng/mL for 4-bromo-N,N-dimethylaniline, respectively. Relative standard deviations (RSDs) were below 5.0%. The relative recoveries from samples of environmental water were in the range of 82.0-94.0%. Compared with other methods, dispersive liquid-liquid microextraction is simple, rapid, sensitive and economical.  相似文献   

12.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

13.
Automated dynamic liquid-liquid-liquid microextraction (D-LLLME) controlled by a programmable syringe pump and combined with HPLC-UV was investigated for the extraction and determination of 5 phenoxy acid herbicides in aqueous samples. In the extraction procedure, the acceptor phase was repeatedly withdrawn into and discharged from the hollow fiber by the syringe pump. The repetitive movement of acceptor phase into and out of the hollow fiber channel facilitated the transfer of analytes into donor phase, from the organic phase held in the pore of the fiber. Parameters such as the organic solvent, concentrations of the donor and acceptor phases, plunger movement pattern, speed of agitation and ionic strength of donor phase were evaluated. Good linearity of analytes was achieved in the range of 0.5-500 ng/ml with coefficients of determination, r2 > 0.9994. Good repeatabilities of extraction performance were obtained with relative standard deviations lower than 7.5%. The method provided up-to 490-fold enrichment within 13 min. In addition, the limits of detection (LODs) ranged from 0.1 to 0.4 ng/mL (S/N = 3). D-LLLME was successfully applied for the analysis of phenoxy acid herbicides from real environmental water samples.  相似文献   

14.
A thin film microextraction method using elecrospun magnetic polybutylene terephthalate nanofibers is developed and implemented to isolate some selected triazines. Due to the high mechanical stability of these nanofibers, they are repeatedly used under harsh magnetic stirring and ultrasonic conditions without any damage and structure degradation. The presence of magnetic nanoparticles within the nanofiber structure increases the extraction efficiency while the fibers could be collected by an external magnet. The synthesized nanocomposite showed strong affinity toward the selected analytes. Apart from the concentration of magnetic nanoparticles within the nanocomposite network, the effect of different parameters on the extraction and desorption processes including the sample pH, extraction time, sample volume, type of desorption solvent, solvent volume, and desorption time were optimized. Eventually, the detection limits were in the range of 0.02–0.05 ng/mL, while the limits of quantification were between 0.1 and 0.2 ng/mL. The linear dynamic range was 0.1–100 ng/mL, and the relative standard deviations were 4–9% (n =  3). The developed method was extended to the real water samples, and the relative recoveries were in the range of 86–103%, indicating that the prepared sorbent is suitable for extraction of triazines from environmental samples.  相似文献   

15.
A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in watermelon and tomato samples was developed by dispersive liquid–liquid microextraction (DLLME) coupled with high performance liquid chromatography-diode array detection (HPLC-DAD). Some experimental parameters that influence the extraction efficiency were studied and optimised to obtain the best extraction results. Under the optimum conditions for the method, the calibration curve was linear in the concentration range from 10 to 1000?ng?g?1 for all the five carbamate pesticides, with the correlation coefficients (r) varying from 0.9982 to 0.9992. Good enrichment factors were achieved ranging between 80 and 177, depending on the compound. The limits of detection (LODs) (S/N?=?3) were ranged from 0.5 to 1.5?ng?g?1. The method has been successfully applied to the analysis of the pesticide residues in watermelon and tomato samples. The recoveries of the method fell in the range between 76.2% to 94.5% with RSDs less than 9.6%, indicating the feasibility of the DLLME method for the determination of the five carbamate pesticides in watermelon and tomato samples.  相似文献   

16.
杨秀敏  王志  王春  韩丹丹  陈永艳  宋双居 《色谱》2007,25(3):362-366
应用中空纤维液相微萃取(HP-LPME)技术建立了水样中呋喃丹、西维因、异丙威和乙霉威的高效液相色谱分析方法。对影响HP-LPME的实验条件进行了优化。采用Accurel Q3/2聚丙烯中空纤维,以甲苯为萃取溶剂,于室温、搅拌速度为720 r/min条件下在4.5 mL样品溶液中萃取20 min,萃取物在室温下经氮气流吹干后用流动相溶解进样。采用Baseline C18分离柱(4.6 mm×250 mm,5.0 μm),以甲醇-水(体积比为60∶40) 为流动相,流速为1.0 mL/min。呋喃丹、西维因、异丙威和乙霉威的检测波长分别为200,223,200和208 nm。该方法对4种氨基甲酸酯类农药的富集倍数均大于45倍;4种氨基甲酸酯类农药在10~100 μg/L质量浓度范围内,其质量浓度与峰面积之间有良好的线性关系,相关系数均大于0.99;呋喃丹、西维因、异丙威和乙霉威的检出限(S/N=3)分别为5,1,5和3 μg/L;实际水样中的加标回收率为82.0%~102.2%,相对标准偏差为2.0%~6.2%(n=6)。  相似文献   

17.
A simple, rapid, highly efficient, and reliable sample preparation method has been developed for the extraction and analysis of triazole pesticides from cucumber, lettuce, bell pepper, cabbage, and tomato samples. This new sorbent in the hollow‐fiber solid‐phase microextraction method is based on the synthesis of polyethylene glycol‐polyethylene glycol grafted flower‐like cupric oxide nanoparticles using sol–gel technology. Afterward, the analytes were analyzed by high‐performance liquid chromatography with ultraviolet detection. The main parameters that affect microextraction efficiency were evaluated and optimized. This method has afforded good linearity ranges (0.5–50 000 ng/mL for hexaconazol, 0.012–50 000 ng/mL for penconazol, and 0.02–50 000 ng/mL for diniconazol), adequate precision (2.9–6.17%, n = 3), batch‐to‐batch reproducibility (4.33–8.12%), and low instrumental LODs between 0.003 and 0.097 ng/mL (n = 8). Recoveries and enrichment factors were 85.46–97.47 and 751–1312%, respectively.  相似文献   

18.
To enrich carbamate pesticides from complex matrices, an adsorbent based on poly (vinylboronic anhydride pyridine complex‐co‐ethylenedimethacrylate) monolith was fabricated and utilized as the extraction phase of multiple monolithic fiber solid‐phase microextraction. Due to the abundant boron atoms in the monolith, the B–N coordination interaction between adsorbent and analytes play a key role in the efficient extraction of analytes. Under the optimized conditions, the monolithic fibers were combined with high‐performance liquid chromatography for the quantify trace levels of carbamate pesticides in environmental water and orange juice samples. For water sample, the limit of detection and limit of quantification were in the range of 0.017–0.29 and 0.057–0.96 μg/L, respectively. The related values in orange juice samples were 0.038–0.39 and 0.12–1.36 μg/kg, respectively. Besides, the proposed method also exhibits wide linearity, satisfactory coefficients of determination, and good precision. The introduced approach was successfully applied to determine trace target analytes in real‐life samples. The spiked recoveries with different fortified concentrations were in the range of 80.4–117% for water samples and 83.7–119% for fruit juice samples. The relative standard deviations were below 10%. The results evidence that the suggested method was convenient, reliable, and eco‐friendly for the monitoring of trace levels of carbamate pesticides in complex samples such as waters and juices.  相似文献   

19.
冯娟娟  孙明霞  冯洋  辛绪波  丁亚丽  孙敏 《色谱》2022,40(11):953-965
样品前处理技术在样品分析中发挥着越来越重要的作用,而对分析物的富集能力和对样品基体的净化程度主要取决于高效的样品前处理材料,所以发展高性能的样品前处理材料一直是该领域的前沿研究方向。近年来,各类先进材料已经被引入样品前处理领域,发展了多种高性能的萃取材料。由于独特的物理化学性质,石墨烯已在各个研究领域获得广泛关注,在样品前处理领域也发挥着重要作用。基于高的比表面积、大的π电子结构、优异的吸附性能、丰富的官能团和易于化学改性等优点,石墨烯和氧化石墨烯基萃取材料被成功应用于各种样品的前处理,对不同领域中多种类型分析物表现出优异的萃取性能。该论文总结和讨论了近3年来石墨烯材料(石墨烯、氧化石墨烯及其功能化材料)在柱固相萃取、分散固相萃取、磁性固相萃取、搅拌棒萃取、纤维固相微萃取和管内固相微萃取等方面的研究进展。基于多种萃取机理如π-π、静电、疏水、亲水、氢键等相互作用,石墨烯萃取材料能够高效萃取和选择性富集不同类别的目标分析物,如重金属离子、多环芳烃、塑化剂、雌激素、药物分子、农药残留、兽药残留等。基于新型石墨烯萃取材料的各种样品前处理技术与多种检测技术如色谱、质谱、原子吸收光谱等联用,广泛应用于环境监测、食品安全和生化分析等领域。最后,总结了石墨烯在样品前处理领域中存在的问题,并展望了未来的发展趋势。  相似文献   

20.
A simple and fast method named microfunnel‐filter‐based emulsification microextraction is introduced for an efficient determination of some organophosphorus pesticides including diazinon, malathion, and chlorpyrifos in the environmental samples including the river, sea, and well water. This method is based upon the dispersion of a low‐toxicity organic solvent (dihexyl ether), as the extractant, in a high volume of an aqueous sample solution (45 mL). It is implemented without a centrifugation step, and using a syringe filter and a micro‐funnel, the phase separation and transfer of the enriched analytes to the gas chromatograph are simply achieved. By filtration of the extractant phase, a suitable sample clean‐up is obtained, and the total extraction time is just a few minutes. The factors influencing the extraction efficiency are optimized, and under the optimal conditions, the proposed method provides a good linearity (in the range of 15–1500 ng/mL (R2 > 0.996). A high enrichment factor is obtained (in the range of 306–342), and the method provides low limits of detection and quantification (in the ranges of 4–8 and 15–25 ng/mL, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号