首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-methylacetamide (NMA) is a very interesting compound and often serves as a model of the peptide bond. The interaction between NMA and water provides a convenient prototype for the solvation of the peptides in aqueous solutions. Here we present NMA-water potential model based on atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM) that is to take ABEEM charges of all atoms, bonds, and lone-pair electrons of NMA and water molecules into the electrostatic interaction term in molecular mechanics. The model has the following characters: (1)it allows the charges in system to fluctuate responding to the ambient environment; (2) for two major types of intermolecular hydrogen bonds, which are the hydrogen bond forming between the lone-pair electron on amide oxygen and the water hydrogen, and the one forming between the lone-pair electron on water oxygen and the amide hydrogen, we take special treatments in describing the electrostatic interaction by the use of the parameters k(lpO=, H) and k(lpO(-), HN(-)), respectively. The newly constructed potential model based on ABEEM/MM is first applied to amide-water clusters and reproduces gas-phase state properties of NMA(H(2)O)(n) (n=1-3) including optimal structures, dipole moments, ABEEM charge distributions, energy difference of the isolated trans- and cis-NMA, interaction energies, hydrogen bonding cooperative effects, and so on, whose results show the good agreement with those measured by available experiments and calculated by ab initio methods. In order to further test the reasonableness of this model and the correctness and transferability of the parameters, many static properties of the larger NMA-water complexes NMA(H(2)O)(n) (n=4-6) are also studied including optimal structures and interaction energies. The results also show fair consistency with those of our quantum chemistry calculations.  相似文献   

2.
A fluctuating charge (FQ) force field is applied to molecular dynamics simulations for six small proteins in explicit polarizable solvent represented by the TIP4P-FQ potential. The proteins include 1FSV, 1ENH, 1PGB, 1VII, 1H8K, and 1CRN, representing both helical and beta-sheet secondary structural elements. Constant pressure and temperature (NPT) molecular dynamics simulations are performed on time scales of several nanoseconds, the longest simulations yet reported using explicitly polarizable all-atom empirical potentials (for both solvent and protein) in the condensed phase. In terms of structure, the FQ force field allows deviations from native structure up to 2.5 A (with a range of 1.0 to 2.5 A). This is commensurate to the performance of the CHARMM22 nonpolarizable model and other currently existing polarizable models. Importantly, secondary structural elements maintain native structure in general to within 1 A (both helix and beta-strands), again in good agreement with the nonpolarizable case. In qualitative agreement with QM/MM ab initio dynamics on crambin (Liu et al. Proteins 2001, 44, 484), there is a sequence dependence of average condensed phase atomic charge for all proteins, a dependence one would anticipate considering the differing chemical environments around individual atoms; this is a subtle quantum mechanical feature captured in the FQ model but absent in current state-of-the-art nonpolarizable models. Furthermore, there is a mutual polarization of solvent and protein in the condensed phase. Solvent dipole moment distributions within the first and second solvation shells around the protein display a shift towards higher dipole moments (increases on the order of 0.2-0.3 Debye) relative to the bulk; protein polarization is manifested via the enhanced condensed phase charges of typical polar atoms such as backbone carbonyl oxygens, amide nitrogens, and amide hydrogens. Finally, to enlarge the sample set of proteins, gas-phase minimizations and 1 ps constant temperature simulations are performed on various-sized proteins to compare to earlier work by Kaminsky et al. (J Comp Chem 2002, 23, 1515). The present work establishes the feasibility of applying a fully polarizable force field for protein simulations and demonstrates the approach employed in extending the CHARMM force field to include these effects.  相似文献   

3.
应用ABEEM/MM模型研究水分子团簇(H2O)n (n=11~16)的性质   总被引:3,自引:0,他引:3  
应用ABEEM/MM 模型计算了较大的水分子团簇(H2O)n (n=11~16)的各种性质,如:优化的几何构型, 氢键个数, 结合能, 稳定性, ABEEM 电荷分布, 偶极矩, 以及结构参数、平均氢键个数和强度, 增加的团簇结合能等.结果表明,从立方体结构到笼状结构的过渡出现在n=12的水分子团簇中,随着类似于笼状结构特点的不断增强,五元环的富集程度有所增加.  相似文献   

4.
Condensed‐phase computational studies of molecules using molecular mechanics approaches require the use of force fields to describe the energetics of the systems as a function of structure. The advantage of polarizable force fields over nonpolarizable (or additive) models lies in their ability to vary their electronic distribution as a function of the environment. Toward development of a polarizable force field for biological molecules, parameters for a series of sulfur‐containing molecules are presented. Parameter optimization was performed to reproduce quantum mechanical and experimental data for gas phase properties including geometries, conformational energies, vibrational spectra, and dipole moments as well as for condensed phase properties such as heats of vaporization, molecular volumes, and free energies of hydration. Compounds in the training set include methanethiol, ethanethiol, propanethiol, ethyl methyl sulfide, and dimethyl disulfide. The molecular volumes and heats of vaporization are in good accordance with experimental values, with the polarizable model performing better than the CHARMM22 nonpolarizable force field. Improvements with the polarizable model were also obtained for molecular dipole moments and in the treatment of intermolecular interactions as a function of orientation, in part due to the presence of lone pairs and anisotropic atomic polarizability on the sulfur atoms. Significant advantage of the polarizable model was reflected in calculation of the dielectric constants, a property that CHARMM22 systematically underestimates. The ability of this polarizable model to accurately describe a range of gas and condensed phase properties paves the way for more accurate simulation studies of sulfur‐containing molecules including cysteine and methionine residues in proteins. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

5.
Free energies of hydration (FEH) have been computed for 13 neutral and nine ionic species as a difference of theoretically calculated Gibbs free energies in solution and in the gas phase. In‐solution calculations have been performed using both SCIPCM and PCM polarizable continuum models at the density functional theory (DFT)/B3LYP and ab initio Hartree–Fock levels with two basis sets (6‐31G* and 6‐311++G**). Good linear correlation has been obtained for calculated and experimental gas‐phase dipole moments, with an increase by ~30% upon solvation due to solute polarization. The geometry distortion in solution turns out to be small, whereas solute polarization energies are up to 3 kcal/mol for neutral molecules. Calculation of free energies of hydration with PCM provides a balanced set of values with 6‐31G* and 6‐311++G** basis sets for neutral molecules and ionic species, respectively. Explicit solvent calculations within Monte Carlo simulations applying free energy perturbation methods have been considered for 12 neutral molecules. Four different partial atomic charge sets have been studied, obtained by a fit to the gas‐phase and in‐solution molecular electrostatic potentials at in‐solution optimized geometries. Calculated FEH values depend on the charge set and the atom model used. Results indicate a preference for the all‐atom model and partial charges obtained by a fit to the molecular electrostatic potential of the solute computed at the SCIPCM/B3LYP/6‐31G* level. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

6.
Modeling the change in the electrostatics of organic molecules upon moving from vacuum into solvent, due to polarization, has long been an interesting problem. In vacuum, experimental values for the dipole moments and polarizabilities of small, rigid molecules are known to high accuracy; however, it has generally been difficult to determine these quantities for a polar molecule in water. A theoretical approach introduced by Onsager [J. Am. Chem. Soc. 58, 1486 (1936)] used vacuum properties of small molecules, including polarizability, dipole moment, and size, to predict experimentally known permittivities of neat liquids via the Poisson equation. Since this important advance in understanding the condensed phase, a large number of computational methods have been developed to study solutes embedded in a continuum via numerical solutions to the Poisson-Boltzmann equation. Only recently have the classical force fields used for studying biomolecules begun to include explicit polarization in their functional forms. Here the authors describe the theory underlying a newly developed polarizable multipole Poisson-Boltzmann (PMPB) continuum electrostatics model, which builds on the atomic multipole optimized energetics for biomolecular applications (AMOEBA) force field. As an application of the PMPB methodology, results are presented for several small folded proteins studied by molecular dynamics in explicit water as well as embedded in the PMPB continuum. The dipole moment of each protein increased on average by a factor of 1.27 in explicit AMOEBA water and 1.26 in continuum solvent. The essentially identical electrostatic response in both models suggests that PMPB electrostatics offers an efficient alternative to sampling explicit solvent molecules for a variety of interesting applications, including binding energies, conformational analysis, and pK(a) prediction. Introduction of 150 mM salt lowered the electrostatic solvation energy between 2 and 13 kcalmole, depending on the formal charge of the protein, but had only a small influence on dipole moments.  相似文献   

7.
The dipole moment of the gas phase water monomer is 1.85 D. When solvated in bulk water, the dipole moment of an individual water molecule is observed to be enhanced to the much larger value of 2.9 +/- 0.6 D. To understand the origin of this dipole moment enhancement, the effective fragment potential (EFP) method is used to solvate an ab initio water molecule to predict the dipole moments for various cluster sizes. The dipole moment as a function of cluster size, nH 2O, is investigated [for n = 6-20 (even n), 26, 32, 41, and 50]. Localized charge distributions are used in conjunction with localized molecular orbitals to interpret the dipole moment enhancement. These calculations suggest that the enhancement of the dipole moment originates from the decrease of the angle between the dipole vectors of the lone pairs on oxygen as the number of hydrogen bonds to that oxygen increases. Thus, the decreased angle, and the consequent increase in water dipole moment, is most likely to occur in environments with a larger number of hydrogen bonds, such as the center of a cluster of water molecules.  相似文献   

8.
ABEEM/MM model has been applied to compute the various properties characterizing water clusters (H2O)n(n = 7-10), such as optimized geometries, the hydrogen bonds number, cluster interaction energies, stabilities, ABEEM charge distributions, dipole moments, structural parameters, and so on, and to describe the transition reflected by the hexamer region from two-dimensional (from dimer to pentamer) to three-dimensional structures (for clusters larger than the hexamer).  相似文献   

9.
Ionic liquids (ILs) play a key role in many chemical applications. As regards the theoretical approach, ILs show added difficulties in calculations due to the composition of the ion pair and to the fact that they are liquids. Although density functional theory (DFT) can treat this kind of systems to predict physico–chemical properties, common versions of these methods fail to perform accurate predictions of geometries, interaction energies, dipole moments, and other properties related to the molecular structure. In these cases, dispersion and self‐interaction error (SIE) corrections need to be introduced to improve DFT calculations involving ILs. We show that the inclusion of dispersion is needed to obtain good geometries and accurate interaction energies. SIE needs to be corrected to describe the charges and dipoles in the ion pair correctly. The use of range–separated functionals allows us to obtain interaction energies close to the CCSD(T) level. © 2017 Wiley Periodicals, Inc.  相似文献   

10.
Molecular geometries, binding energies, ionization potentials and dipole moments are calculated by the SINDO1 method for a large number of molecules containing C, N and O atoms. Comparison is made with MINDO/3, MNDO and where possible with STO-3G results. The explicit data and an error statistics show the relative merits of SINDO1.  相似文献   

11.
Cooperativity in ionic liquids is investigated by means of static quantum chemical calculations. Larger clusters of the dimethylimidazolium cation paired with a chloride anion are calculated within density functional theory combined with gradient corrected functionals. Tests of the monomer unit show that density functional theory performs reasonably well. Linear chain and ring aggregates have been considered and geometries are found to be comparable with liquid phase structures. Cooperative effects occur when the total energy of the oligomer differs from a simple sum of monomer energies. Cooperative effects have been found in the structural motifs examined. A systematic study of linear chains of increasing length (up to nine monomer units) has shown that cooperativity plays a more important role than expected and is stronger than in water. The Cl...H distance of the chloride to the most acidic proton increases with an increasing number of monomer units. The average bond distance approaches 218.9 pm asymptotically. The dipole moment grows almost linearly and the dipole moment per monomer unit reaches the asymptotic value of 16.3 D. The charge on the chloride atoms decreases with an increasing chain length. In order to detect local hydrogen bonding in the clusters a new parametrization of the shared-electron number method is introduced. We find decreasing hydrogen bond energies with an increasing cluster size for both the first hydrogen bond to the most acidic proton and the average hydrogen bond.  相似文献   

12.
Conformational analysis of 1-amino-3-butene and 3-butene-1-thiol was carried out using the 4-21G basis set. The conformers obtained were subjected to 6-31G* single-point analysis for the calculation of energies, charge distributions, and dipole moments. The geometries and stabilities obtained are in good agreement with available experimental data. The results are interpreted in terms of intramolecular hydrogen bonding and anomeric interactions: Some of the most stable conformers of both molecules have intramolecular hydrogen bonds between the hydrogens of the amino or thiol groups and the electrons of the double bond. The 4-21G geometries were refined to obtain rotational constants closer to the experimental values.  相似文献   

13.
《Chemical physics letters》2006,417(1-3):251-255
Molecular dynamics simulations of hydrated Na–LSX zeolite at 300 K were performed with the explicit inclusion of the polarization of water. The Si/Al ratio of LSX is 1 and the number of water molecules per unit cell ranged from 0 to 224 to represent a range of hydration. The calculation results show that the dipole moments of water molecules increase with increasing hydration. By using the SPC–FQ water model instead of the SPC/E water model, the differential heat of adsorption showed similar trends in both models, whereas the differential potential energies between water–water and between water–zeolite are more sensitive to hydration.  相似文献   

14.
ABEEM/MM model has been applied to compute the various properties characterizing water clusters (H2O) n (n = 7?10), such as optimized geometries, the hydrogen bonds number, cluster interaction energies, stabilities, ABEEM charge distributions, dipole moments, structural parameters, and so on, and to describe the transition reflected by the hexamer region from two-dimensional (from dimer to pentamer) to three-dimensional structures (for clusters larger than the hexamer).  相似文献   

15.
The applicability of the local density approximation (LDA ) and of corresponding gradient corrections (for the exchange and correlation energy) for the treatment of the hydrogen bond is investigated. As test systems, we consider the water dimer and the H2O…?HX complexes (X = F, Cl, Br): Using an LCAO scheme, their equilibrium geometries and interaction energies are ?alculated and compared with experimental data and with other calculations. We obtain that the LDA gives the geometries in qualitative agreement with other data, whereas the energies are overestimated. The use of the gradient corrections (GC ) according to Becke and Perdew leads to a significant improvement of the geometry, and especially of the interaction energies. The calculations indicate further that LDA + GC should also be able to describe weaker intermolecular interactions than the usual hydrogen bond. Finally, a short discussion of the charge distribution and the dipole moments of the H2O…?HX complexes is performed. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
Another form of the sum rule for dipolar absorptions has been derived by means of quantum statistics. The difference between this and usually used form results from a quantum effect on the molecular rotational motion. By the joint use of the two forms, average rotational kinetic energies of water molec in the liquid and solid phases and some dipolar molecules in solutions have been estimated. It has been shown that the average rotational kinetic energ larger than the value expected from the classical equipartition rule, with an increase in the hindering potential for the rotational motion of the mole The dipole moments of water molecules in liquid and solid water have been estimated. These are considerably smaller than the gas-phase value.  相似文献   

17.
We have measured the dielectric relaxation of several glass forming branched alkanes with very low dielectric loss in the frequency range 50 Hz-20 kHz. The molecular liquids of this study are 3-methylpentane, 3-methylheptane, 4-methylheptane, 2,3-dimethylpentane, and 2,4,6-trimethylheptane. All liquids display asymmetric loss peaks typical of supercooled liquids and slow beta relaxations of similar amplitudes. As an unusual feature, deliberate doping with 2-ethyl-1-hexanol, 5-methyl-2-hexanol, 2-methyl-1-butanol, 1-propanol, or 2-methyltetrahydrofuran at the 1 wt % level generates additional relaxation peaks at frequencies below those of the alpha relaxation. The relaxation times of these sub-alpha-peaks increase systematically with the size of the dopant molecules. Because these features are spectrally separate from the bulk dynamics, the rotational behavior and effective dipole moments of the probes can be studied in detail. For the alcohol guest molecules, the large relative rotational time scales and small effective dipole moments are indicative of hydrogen bonded clusters instead of individual molecules.  相似文献   

18.
19.
五味子素A、B和五味子丙素的密度泛函研究   总被引:4,自引:2,他引:2  
采用密度泛函B3LYP方法在6-31G基组水平上对五味子素A、B及五味子丙素3种五味子提取物进行了优化计算,并从平衡几何构型、前线分子轨道、净电荷分布等方面对计算结果做了比较.计算结果表明分子中的二氧五环对分子的药物活性具有较大影响.随着分子中二氧五环数目的增加,分子中联苯环扭转角减小,前线轨道能级和能级差都减小,联苯环上正电荷增加,由此可判断3种分子活性顺序应为五味子丙素>五味子素B>五味子素A.  相似文献   

20.
Choline saccharinate and choline acesulfamate are two examples of hydrophilic ionic liquids, which can be prepared from easily available starting materials (choline chloride and a non-nutritive sweetener). The (eco)toxicity of these ionic liquids in aqueous solution is very low in comparison to other types of ionic liquids. A general method for the synthesis and purification of hydrophilic ionic liquids is presented. The method consists of a silver-free metathesis reaction, followed by purification of the ionic liquid by ion-exchange chromatography. The crystal structures show a marked difference in hydrogen bonding between the two ionic liquids, although the saccharinate and the acesulfamate anions show structural similarities. The optimized structures, the energetics, and the charge distribution of cation-anion pairs in the ionic liquids were studied by density functional theory (DFT) and second-order (M?ller-Plesset) perturbation theory calculations. The occupation of the non-Lewis orbitals was considered to obtain a qualitative picture of the Lewis structures. The calculated interaction energies and the dipole moments for the ion pairs in the gas phase were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号