首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
化学   27篇
数学   4篇
物理学   9篇
  2012年   3篇
  2011年   8篇
  2010年   4篇
  2009年   2篇
  2008年   5篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
2.

Background  

Fully functional HIV-1-specific CD8 and CD4 effector T-cell responses are vital to the containment of viral activity and disease progression. These responses are lacking in HIV-1-infected patients with progressive disease. We attempted to augment fully functional HIV-1-specific CD8 and CD4 effector T-cell responses in patients with advanced chronic HIV-1 infection.  相似文献   
3.
4.
Condensed‐phase computational studies of molecules using molecular mechanics approaches require the use of force fields to describe the energetics of the systems as a function of structure. The advantage of polarizable force fields over nonpolarizable (or additive) models lies in their ability to vary their electronic distribution as a function of the environment. Toward development of a polarizable force field for biological molecules, parameters for a series of sulfur‐containing molecules are presented. Parameter optimization was performed to reproduce quantum mechanical and experimental data for gas phase properties including geometries, conformational energies, vibrational spectra, and dipole moments as well as for condensed phase properties such as heats of vaporization, molecular volumes, and free energies of hydration. Compounds in the training set include methanethiol, ethanethiol, propanethiol, ethyl methyl sulfide, and dimethyl disulfide. The molecular volumes and heats of vaporization are in good accordance with experimental values, with the polarizable model performing better than the CHARMM22 nonpolarizable force field. Improvements with the polarizable model were also obtained for molecular dipole moments and in the treatment of intermolecular interactions as a function of orientation, in part due to the presence of lone pairs and anisotropic atomic polarizability on the sulfur atoms. Significant advantage of the polarizable model was reflected in calculation of the dielectric constants, a property that CHARMM22 systematically underestimates. The ability of this polarizable model to accurately describe a range of gas and condensed phase properties paves the way for more accurate simulation studies of sulfur‐containing molecules including cysteine and methionine residues in proteins. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   
5.
Deoxyribonucleic acid (DNA) is composed of five major elements carbon, hydrogen, nitrogen, oxygen, and phosphorus. The substitution of any of these elements in DNA would be anticipated to have major biological implications. However, recent studies have suggested that the substitution of arsenic into DNA (As-DNA) in bacteria may be possible. To help evaluate this possibility, ab initio quantum mechanical calculations are used to show that arsenodiester and phosphodiester linkages have similar geometric and conformational properties. Based on these results, it is suggested that the As-DNA will have similar conformational properties to phosphorus-based DNA, including the maintenance of base stacking.  相似文献   
6.
7.
Monosaccharide derivatives such as xylose, fucose, N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GlaNAc), glucuronic acid, iduronic acid, and N-acetylneuraminic acid (Neu5Ac) are important components of eukaryotic glycans. The present work details development of force-field parameters for these monosaccharides and their covalent connections to proteins via O-linkages to serine or threonine sidechains and via N-linkages to asparagine sidechains. The force field development protocol was designed to explicitly yield parameters that are compatible with the existing CHARMM additive force field for proteins, nucleic acids, lipids, carbohydrates, and small molecules. Therefore, when combined with previously developed parameters for pyranose and furanose monosaccharides, for glycosidic linkages between monosaccharides, and for proteins, the present set of parameters enables the molecular simulation of a wide variety of biologically-important molecules such as complex carbohydrates and glycoproteins. Parametrization included fitting to quantum mechanical (QM) geometries and conformational energies of model compounds, as well as to QM pair interaction energies and distances of model compounds with water. Parameters were validated in the context of crystals of relevant monosaccharides, as well NMR and/or x-ray crystallographic data on larger systems including oligomeric hyaluronan, sialyl Lewis X, O- and N-linked glycopeptides, and a lectin:sucrose complex. As the validated parameters are an extension of the CHARMM all-atom additive biomolecular force field, they further broaden the types of heterogeneous systems accessible with a consistently-developed force-field model.  相似文献   
8.
Interactions of pulverized crystalline silica with biological systems, including the lungs, cause cell damage, inflammation, and apoptosis. To allow computational atomistic modeling of these pathogenic processes, including interactions between silica surfaces and biological molecules, new parameters for quartz, compatible with the CHARMM empirical force field were developed. Parameters were optimized to reproduce the experimental geometry of alpha-quartz, ab initio vibrational spectra, and interactions between model compounds and water. The newly developed force field was used to study interactions of water with two singular surfaces of alpha-quartz, (011) and (100). Properties monitored and analyzed include the variation of the density of water molecules in the plane perpendicular to the surface, disruption of the water H-bond network upon adsorption, and space-time correlations of water oxygen atoms in terms of Van Hove self-correlation functions. The vibrational density of states spectra of water in confined compartments were also computed and compared with experimental neutron-scattering results. Both the attenuation and shifting to higher frequencies of the hindered translational peaks upon confinement are clearly reproduced by the model. However, an upshift of librational peaks under the conditions of model confinement still remains underrepresented at the current empirical level.  相似文献   
9.
The B-form of DNA can populate two different backbone conformations: BI and BII, defined by the difference between the torsion angles ε and ζ (BI = ε-ζ < 0 and BII = ε-ζ > 0). BI is the most populated state, but the population of the BII state, which is sequence dependent, is significant and accumulating evidence shows that BII affects the overall structure of DNA, and thus influences protein-DNA recognition. This work presents a reparametrization of the CHARMM27 additive nucleic acid force field to increase the sampling of the BII form in MD simulations of DNA. In addition, minor modifications of sugar puckering were introduced to facilitate sampling of the A form of DNA under the appropriate environmental conditions. Parameter optimization was guided by quantum mechanical data on model compounds, followed by calculations on several DNA duplexes in the condensed phase. The selected optimized parameters were then validated against a number of DNA duplexes, with the most extensive tests performed on the EcoRI dodecamer, including comparative calculations using the Amber Parm99bsc0 force field. The new CHARMM model better reproduces experimentally observed sampling of the BII conformation, including sampling as a function of sequence. In addition, the model reproduces the A form of the 1ZF1 duplex in 75 % ethanol, and yields a stable Z-DNA conformation of duplex (GTACGTAC) in its crystal environment. The resulting model, in combination with a recent reoptimization of the CHARMM27 force field for RNA, will be referred to as CHARMM36.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号