首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular dipole moment of the 3,4-bis(dimethylamino)-3-cyclobutene-1,2-dione (DMACB) molecule and its enhancement in the crystal was evaluated by periodic RHF ab initio computations. A discrete boundary partitioning of the electronic density that allows an unambiguous partitioning of the molecular space in the condensed phase was adopted. The resulting molecular dipole in the crystal compares favorably with the experimental value obtained by a multipolar analysis of single-crystal X-ray diffraction data recorded at 20 K, using a fuzzy boundary partitioning of the derived pseudoatom densities. We show that a large and highly significant molecular dipole enhancement may occur upon crystallization, despite the lack of a strongly hydrogen bonded environment in the crystal. The 23 unique C-H...O interactions which are formed upon packing of the DMACB molecule induce an increase in the molecular dipole (over 75%) that is comparable to or greater than that found in systems which are characterized by the stronger O-H...O and N-H...O hydrogen bonds. The DMACB molecule constitutes an excellent system for the study of C-H...O interactions in the condensed phase, since no other kind of competing hydrogen bonds is present in its crystal. A simple and qualitative model for the matrix contribution to the DMACB molecular dipole enhancement in the crystal is proposed. The formation of several weak C-H...O bonds is found to yield a small (about 0.2 e) net flux of electronic charge flowing from the hydrogens of the methyl groups to the carbonyl oxygen atoms. Despite the limited increase of the intramolecular charge transfer upon crystallization, a large molecular dipole enhancement occurs because the centroids of the positive and negative induced charges are quite far apart. This work highlights a new and important role of the C-H...O bond, besides those already known in the literature.  相似文献   

2.
Optimizations at the BLYP and B3LYP levels are reported for mixed uranyl-water/acetonitrile complexes [UO(2)(H(2)O)(5-n)(MeCN)(n)](2+) (n = 0-5), in both the gas phase and a polarizable continuum modeling acetonitrile. Car-Parrinello molecular dynamics (CPMD) simulations have been performed for these complexes in the gas phase, and for selected species (n = 0, 1, 3, 5) in a periodic box of liquid acetonitrile. According to structural and energetic data, uranyl has a higher affinity for acetonitrile than for water in the gas phase, in keeping with the higher dipole moment and polarizability of acetonitrile. In acetonitrile solution, however, water is the better ligand because of specific solvation effects. Analysis of the dipole moment of the coordinated water molecule in [UO(2)(H(2)O)(MeCN)(4)](2+) reveals that the interaction with the second-shell solvent molecules (through fairly strong and persistent O-H···N hydrogen bonds) causes a significant increase of this dipole moment (by more than 1 D). This cooperative polarization of water reinforces the uranyl-water bond as well as the water solvation via strengthened (UO(2))OH(2)···NCMe hydrogen bonds. Such cooperativity is essentially absent in the acetonitrile ligands that make much weaker (UO(2))NCMe···NCMe hydrogen bonds. Beyond the uranyl case, this study points to the importance of cooperative polarization effects to enhance the M(n+) ion affinity for water in condensed phases involving M(n+)-OH(2)···A fragments, where A is a H-bond proton acceptor and M(n+) is a hard cation.  相似文献   

3.
随机产生单笼形水分子簇(H2O)n(n=8~36),经分类统计后发现,在笼形水分子簇中,其1221,1212,2121和2112四类氢键的个数与水分子和氢键总数之间有定量关系,且1212类氢键的个数与2121类的氢键始终相等.如果笼形水分子簇中某一类氢键数已知,则它的其余三类氢键的个数也随即确定.  相似文献   

4.
The first time-resolved experiments in which interfacial molecules are pumped to excited electronic states and probed by vibrational sum frequency generation (SFG) are reported. This method was used to measure the out-of-plane rotation dynamics, i.e. time dependent changes in the polar angle, of a vibrational chromophore of an interfacial molecule. The chromophore is the carbonyl group, the rotation observed is that of the -C=O bond axis, with respect to the interfacial normal, and the interfacial molecule is coumarin 314 (C314) at the air/water interface. The orientational relaxation time was found to be 220+/-20 ps, which is much faster than the orientational relaxation time of the permanent dipole moment axis of C314 at the same interface, as obtained from pump-second harmonic probe experiments. Possible effects on the rotation of the -C=O bond axis due to the carbonyl group hydrogen bonding with interfacial water are discussed. From the measured equilibrium orientation of the permanent dipole moment axis and the carbonyl axis, and knowledge of their relative orientation in the molecule, the absolute orientation of C314 at the air/water interface is obtained.  相似文献   

5.
In order to test the validity of the cluster ansatz approach as well as of the continuum model approach and to learn about the solvation shell, we carried out first-principles molecular dynamics simulations of the alanine hydration. Our calculations contained one alanine molecule dissolved in 60 water molecules. Dipole moments of individual molecules were derived by means of maximally localized Wannier functions. We observed an average dipole moment of about 16.0 D for alanine and of about 3.3 D for water. In particular, the average water dipole moment in proximity of alanine's COO(-) group decayed continously with increasing distance, while, surprisingly, close to the CH3 and NH3+ group, the dipole moment first rose before its value dropped. In a cluster ansatz approach, we considered snapshots of alanine surrounded by different water molecule shells. The dipole moments from the cluster approaches utilizing both maximally localized Wannier functions as well as natural population analysis served to approximate the dipole moments of the total trajectory. Sufficient convergence of the cluster ansatz approach is found for either of the two solvent shells around the polar groups and one solvent shell around the apolar groups or two solvent shells around the polar groups surrounded by a dieletric continuum.  相似文献   

6.
ABEEM/MM model has been applied to compute the various properties characterizing water clusters (H2O)n(n = 7-10), such as optimized geometries, the hydrogen bonds number, cluster interaction energies, stabilities, ABEEM charge distributions, dipole moments, structural parameters, and so on, and to describe the transition reflected by the hexamer region from two-dimensional (from dimer to pentamer) to three-dimensional structures (for clusters larger than the hexamer).  相似文献   

7.
ABEEM/MM model has been applied to compute the various properties characterizing water clusters(H2O) n(n = 7-10) ,such as optimized geometries,the hydrogen bonds number,cluster interaction en-ergies,stabilities,ABEEM charge distributions,dipole moments,structural parameters,and so on,and to describe the transition reflected by the hexamer region from two-dimensional(from dimer to pen-tamer) to three-dimensional structures(for clusters larger than the hexamer) .  相似文献   

8.
Temperature and size effects on the behavior of nanoscale water molecule clusters are investigated by molecular dynamics simulations. The flexible three-centered (F3C) water potential is used to model the inter- and intramolecular interactions of the water molecule. The differences between the structural properties for the surface region and those for the interior region of the cluster are also investigated. It is found that as the temperature rises, the average number of hydrogen bonds per water molecule decreases, but the ratio of surface water molecules increases. After comparing the water densities in interior regions and the average number of hydrogen bonds in those regions, we find there is no apparent size effect on water molecules in the interior region, whereas the size of the water cluster has a significant influence on the behavior of water molecules at the surface region.  相似文献   

9.
10.
The structure and energetics of water-ammonia mixed clusters with an excess electron, [(H2O)n(NH3)m]- with m=1, n=2-6 and m=2, n=2, and also the corresponding neutral clusters are investigated in detail by means of ab initio quantum chemical calculations. The authors focus on the localization structure of the excess electron with respect to its surface versus interiorlike states, its binding to ammonia versus water molecules, the spatial and orientational arrangement of solvent molecules around the excess electron, the changes of the overall hydrogen-bonded structure of the clusters as compared to those of the neutral ones and associated dipole moment changes, vertical detachment energies of the anionic clusters, and also the vertical attachment energies of the neutral clusters. It is found that the hydrogen-bonded structure of the anionic clusters are very different from those of the neutral clusters unlike the case of water-ammonia dimer anion, and these changes in structural arrangements lead to drastically different dipole moments of the anionic and the neutral clusters. The spatial distribution of the singly occupied molecular orbital holding the excess electron shows only surface states for the smaller clusters. However, for n=5 and 6, both surface and interiorlike binding states are found to exist for the excess electron. For the surface states, the excess electron can be bound to the dangling hydrogens of either an ammonia or a water molecule with different degrees of stability and vertical detachment energies. The interiorlike states, wherever they exist, are found to have a higher vertical detachment energy than any of the surface states of the same cluster. Also, for interiorlike states, the ammonia molecule with its dangling hydrogens is always found to stay on top or on a far side of the charge density of the excess electron without participating in the hydrogen bond network of the cluster; the intermolecular hydrogen bonds are formed by the water molecules only which add to the overall stability of these anionic clusters.  相似文献   

11.
The vibrational OH stretch spectra have been measured for Na(H2O)n clusters in the size range from n = 8 to 60. The complete size selection is achieved by coupling the UV radiation of a dye laser below the ionization threshold with the tunable IR radiation of an optical parametric oscillator. The spectra are dominated by intensity peaks around 3400 cm(-1) which we attribute to an increased transition dipole moment of delocalized electrons in this type of doped cluster. Aside from the positions of free (3715 cm(-1)) and double donor (3560 cm(-1)) bonds which are known from pure water clusters, specific transitions are observed at 3640 cm(-1) and in the range of the single donor bonds between 3000 and 3200 cm(-1).  相似文献   

12.
A new Hirshfeld partitioning of cluster polarizability into intrinsic polarizabilities and charge delocalization contributions is presented. For water clusters, density-functional theory calculations demonstrate that the total polarizability of a water molecule in a cluster depends upon the number and type of hydrogen bonds the molecule makes with its neighbors. The intrinsic contribution to the molecular polarizability is transferable between water molecules displaying the same H-bond scheme in clusters of different sizes, and geometries, while the charge delocalization contribution also depends on the cluster size. These results could be used to improve the existing force fields.  相似文献   

13.
Calculations at AM1, PM3, and HF/6‐31G levels of part of the IR spectrum of the water–kaolinite intercalated system based on a 96‐atom cluster of kaolinite with one water molecule are reported. Only the water molecule conformation is optimized. Frequencies and intensities for just the water vibrations and stretchings of four cluster hydroxyls were calculated through partial Hessian matrices and polar tensors obtained by numerical differentiation of energy gradients and dipole moment. The water molecule was found to attach to the cluster mainly through a double hydrogen bond to the siloxane inner surface, partially entering the siloxane ring hexagonal hole. Though the theoretical results predict that the water OH stretching frequencies decrease from the gas‐phase state to the intercalated state, they are still higher than expected with respect to the observed spectrum. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

14.
In ab initio calculations a finite graphitic cluster model is often used to approximate the interaction energy of a water molecule with an infinite single-layer graphitic surface (graphene). In previous studies, the graphitic cluster model is a collection of fused benzene rings terminated by hydrogen atoms. In this study, the effect of using fluorine instead of hydrogen atoms for terminating the cluster model is examined to clarify the role of the boundary. The interaction energy of a water molecule with the graphitic cluster was computed using ab initio methods at the MP2 level of theory and with the 6-31G(d = 0.25) basis set. The interaction energy of a water molecule with graphene is estimated by extrapolation of two series of increasing size graphitic cluster models (C(6n2)H(6n) and C(6n2)F(6n), n = 1-3). Two fixed orientations of water molecule are considered: (a) both hydrogen atoms of water pointing toward the cluster (mode A) and (b) both hydrogen atoms of water pointing away from the cluster (mode B). The interaction energies for water mode A are found to be -2.39 and -2.49 kcal/mol for C(6n2)H(6n) and C(6n2)F(6n) cluster models, respectively. For water mode B, the interaction energies are -2.32 and -2.44 kcal/mol for C(6n2)H(6n) and C(6n2)F(6n) cluster models, respectively.  相似文献   

15.
A combination of neutron diffraction augmented with isotopic substitution and computer modeling using empirical potential structure refinement has been used to extract detailed structural information for L-glutamic acid dissolved in 2 M NaOH solution. This work shows that the tetrahedral hydrogen bonding network in water is severely disrupted by the addition of glutamic acid and NaOH, with the number of water-water hydrogen bonds being reduced from 1.8 bonds per water molecule in pure water to 1.4 bonds per water molecule in the present solution. In the glutamic acid molecule, each carboxylate oxygen atom forms an average of three hydrogen bonds with the surrounding water solvent with one of these hydrogens being shared between the two oxygen atoms on each carboxylate group, while each amine hydrogen forms a single hydrogen bond with the surrounding water solvent. Additionally, the average conformation of the glutamic acid molecules in these solutions is extracted.  相似文献   

16.
A water molecule in the vicinity of a hydrophobic surface forms fewer hydrogen bonds than a bulk molecule because the surface restricts the space available for other water molecules necessary for its hydrogen-bonding. In this vicinity, the number of hydrogen bonds per water molecule depends on its distance to the surface. Considering the number of hydrogen bonds per bulk water molecule (available experimentally) as the only reference quantity, we propose an improved probabilistic approach to water hydrogen-bonding that allows one to obtain an analytic expression for this dependence. (The original version of this approach [Y. S. Djikaev and E. Ruckenstein, J. Chem. Phys. 130, 124713 (2009)] provides the number of hydrogen bonds per water molecule in the vicinity of a hydrophobic surface as an average over all possible locations and orientations of the molecule.) This function (the number of hydrogen bonds per water molecule versus its distance to a hydrophobic surface) can be used to develop analytic models for the effect of hydrogen-bonding on the hydration of hydrophobic particles and their solvent-mediated interaction. Presenting a model for the latter, we also examine the temperature effect on the solvent-mediated interaction of two parallel hydrophobic plates.  相似文献   

17.
Electron attachment dynamics of excess electron in water cluster (H2O)n (n = 2 and 3) have been investigated by means of full-dimensional direct ab initio molecular dynamics (MD) method at the MP26-311++G(d,p) level. It was found that the hydrogen bond breaking due to the excess electron is an important process in the first stage of electron capture in water trimer. Time scale of electron localization and hydrogen bond breaking were determined by the direct ab initio MD simulation. The initial process of hydration in water cluster is clearly visualized in the present study. In n = 3, an excess electron is first trapped around the cyclic water trimer with a triangular form, where the excess electron is equivalently distributed on the three water molecules at time zero. After 50 fs, the excess electron is concentrated into two water molecules, while the potential energy of the system decreases by -1.5 kcal/mol from the vertical point. After 100 fs, the excess electron is localized in one of the water molecules and the potential energy decreases by -5.3 kcal/mol, but the triangular form still remained. After that, one of the hydrogen bonds in the triangular form is gradually broken by the excess electron, while the structure becomes linear at 100-300 fs after electron capture. The time scale of hydrogen bond breaking due to the excess electron is calculated to be about 300 fs. Finally, a dipole bound state is formed by the linear form of three water molecules. In the case of n = 2, the dipole bound anion is formed directly. The mechanism of electron hydration dynamics was discussed on the basis of theoretical results.  相似文献   

18.
The absorption of CO and NO molecules by (H2O)20 clusters was studied by the method of molecular dynamics. In general, the clusters containing CO molecules are more stable mechanically, while the clusters with NO molecules are more stable against heating. The mobility of NO molecules in such clusters is higher than that of CO molecules. The total dipole moment, the static dielectric permeability, the number of active electrons in the clusters, and the specific number of hydrogen bonds between water molecules possess peak values when the number of doping molecules i = 6. IR absorption spectra mostly acquire a smooth shape at i > 6. Capture of CO and NO molecules by water cluster operates as anti-greenhouse effect.  相似文献   

19.
Pyridine containing water clusters, H(+)(pyridine)(m)(H(2)O)(n), have been studied both experimentally by a quadrupole time-of-flight mass spectrometer and by quantum chemical calculations. In the experiments, H(+)(pyridine)(m)(H(2)O)(n) with m = 1-4 and n = 0-80 are observed. For the cluster distributions observed, there are no magic numbers, neither in the abundance spectra, nor in the evaporation spectra from size selected clusters. Experiments with size-selected clusters H(+)(pyridine)(m)(H(2)O)(n), with m = 0-3, reacting with D(2)O at a center-of-mass energy of 0.1 eV were also performed. The cross-sections for H/D isotope exchange depend mainly on the number of water molecules in the cluster and not on the number of pyridine molecules. Clusters having only one pyridine molecule undergo D(2)O/H(2)O ligand exchange, while H(+)(pyridine)(m)(H(2)O)(n), with m = 2, 3, exhibit significant H/D scrambling. These results are rationalized by quantum chemical calculations (B3LYP and MP2) for H(+)(pyridine)(1)(H(2)O)(n) and H(+)(pyridine)(2)(H(2)O)(n), with n = 1-6. In clusters containing one pyridine, the water molecules form an interconnected network of hydrogen bonds associated with the pyridinium ion via a single hydrogen bond. For clusters containing two pyridines, the two pyridine molecules are completely separated by the water molecules, with each pyridine being positioned diametrically opposite within the cluster. In agreement with experimental observations, these calculations suggest a "see-saw mechanism" for pendular proton transfer between the two pyridines in H(+)(pyridine)(2)(H(2)O)(n) clusters.  相似文献   

20.
The effect of an external electric field on water clusters of the (H2O)n type, with [1 n 15], in the ground state was analyzed at the B3LYP/cc-pVTZ level of theory. The calculations showed that an external electric field changes the number of hydrogen bonds, reduces the cluster sizes and increases the strength of the inter-cluster hydrogen bonds. The particular symmetry of the cluster and the null dipole moment in these specific configurations suggest that their stability can be associated with a perfect alignment of the water molecules, maximizing attractive electrostatic interactions caused by changes in the charge distribution of the clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号