首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
用TPD、IR技术研究了MgO、CaO和BaO改性的HZSM-5表面酸性,并以苯、乙醇烷基化合成乙苯反应考察了催化剂的活性和选择性。结果表明,随着氧化物含量的增加,氨的TPD量下降,IR谱图上1550cm-1(B酸)吸收峰减小,活性及选择性均下降(MgO含量为3%时选择性最高)。  相似文献   

2.
以尿素为燃烧剂,先采用燃烧法制备CuO-ZnO催化剂,接着采用研磨法将其与HZSM-5分子筛均匀混合形成CuO-ZnO/HZSM-5双功能催化剂.采用固定床反应器,在反应温度260℃、压力3.0 MPa、空速1 500 h-1条件下,考察了不同Cu/Zn(摩尔比)催化剂在CO_2加氢合成二甲醚反应中的催化性能.通过XRD、N_2等温吸附脱附、H2-TPR、NH3-TPD对催化剂进行表征,研究了不同Cu/Zn对催化剂结构及表面酸性的影响.结果表明:当Cu∶Z n=6∶4时,催化剂对CO_2催化加氢直接合成二甲醚反应的催化活性和选择性最佳,CO_2的转化率、DME的选择性分别为11.95%和28.74%,且在催化剂上具有更多的低温还原Cu和较强的酸中心,从而提高了CO_2加氢活性和二甲醚的选择性.  相似文献   

3.
采用0.2 mol/L的NaOH溶液对HZSM-5分子筛进行了不同时间的碱改性处理, 并对分子筛的结构和酸性进行表征, 考察了碱改性对HZSM-5催化剂的低碳烃芳构化活性的影响. 结果表明, HZSM-5分子筛经碱改性后会产生少量介孔, 且随改性时间延长, 介孔数量增加, 平均孔径增大, 总酸量降低, B酸/L酸比值降低. 120 min碱改性HZSM-5催化剂的活性、 稳定性以及目标产物苯、 甲苯、 乙苯和二甲苯(统称BTEX)的选择性最高.  相似文献   

4.
通过对Cu/HZSM-5分子筛上乙醇的无氧芳构化反应主要产物的在线定量分析,评价了催化剂组成、反应温度、气体空速对芳构化活性的影响。结果表明:Cu/HZSM-5分子筛具有良好的芳构化性能。当金属Cu含量为5%,催化温度为300℃,乙醇气体空速为167h-1时,催化剂具有最好的芳构化效果,乙醇的转化率为35.41%,苯的选择性达到了27.59%。对不同催化温度下反应产物中乙烯生成量的变化情况的研究,证实了乙烯是此催化反应过程的一种最初产物。  相似文献   

5.
采用稀土Nd盐溶液等体积浸渍法制备了Nd/HZSM-5催化剂,并采用BET、XRD、SEM、TG、FT-IR、NH3-TPD、ICP-AES表征手段对催化剂的孔道变化、结构、形貌、热稳定性、酸性及Nd负载量进行测试.在固定床单程管式微反应器上进行催化性能评价.结果表明,改性后分子筛颗粒尺寸减小、表面和孔道结构未发生改变、弱酸强度上升、热稳定性未发生变化,且Nd/HZSM-5催化剂在苯与甲醇烷基化反应中,在进料比1∶1、常压、温度380℃、反应时间3.0 h、质量空速MHSV=2.5 h-1、Nd负载量为1.35%、催化剂用量2.5 g的条件下,苯的转化率为74.14%,产物二甲苯的选择性和收率分别为57.96%和42.97%.  相似文献   

6.
王圣  黄镇  方越  秦枫  徐华龙  沈伟 《燃料化学学报》2018,46(10):1218-1224
分别采用共沉淀法和水热法制备了ZnCrO_x复合金属氧化物和HZSM-5沸石,通过物理混合得到双功能催化剂,实现了合成气一步高选择性制备异构烷烃。采用XRD、TEM、氮吸附和NH3-TPD等技术对催化剂进行了表征,考察了双功能催化剂中HZSM-5沸石组分硅铝比以及ZnCrO_x/HZSM-5质量比(OX/ZEO mass ratio)对合成气催化转化反应性能的影响。结果表明,随着HZSM-5硅铝比的增加,催化剂酸密度下降,CO转化率略有下降,产物中C5+选择性显著提高,异构烷烃比例不断增加。此外,在保证CO转化率的前提下提高双功能催化剂中ZnCrO_x组分的比例,产物中C5+的选择性也显著上升。在400℃、2.0 M Pa、进料空速(GHSV)为3600 mL/(h·gcat)的条件下,合成气(H2/CO(volume ratio)=2)转化率达到35%,C5+选择性超过44%,且C5+中异戊烷比例高达65%。  相似文献   

7.
采用等体积浸渍法制备了一系列不同Mg含量(0–1.0%)的HZSM-5分子筛。利用X射线衍射(XRD)、N_2吸附/脱附、铝魔角旋转固体核磁共振(~(27)AlMASNMR)、~(29)SiMASNMR、氨-程序升温脱附(NH_3-TPD)和吡啶吸附傅里叶变换红外(Pyridine-IR)光谱等技术对改性前后样品的结构和酸性进行了详细表征,在常压连续流动固定床反应器上考察其对乙烯转化制丙烯(ETP)反应的催化性能,评价了反应条件和Mg改性的影响。结果表明,在温度为550°C、乙烯体积空速GHSV=3000 h~(-1)的适宜反应条件下,0.5%适量镁改性HZSM-5导致乙烯转化率有所下降,但丙烯选择性增加到45%以上,而副产物芳烃的选择性降到8%以下。反应前样品的酸性表征和反应后积碳样品的TPO及~(13)CCP/MASNMR谱图分析表明适量镁改性使HZSM-5分子筛的总酸量和强B酸量减少而中强酸量增加,从而提高了丙烯的选择性,但是过量的镁改性使分子筛的总酸量明显减少,导致催化剂的活性显著下降。  相似文献   

8.
研究了不同分子筛负载的Pt催化剂上丙烷与苯的烷基化反应.结果表明,Pt/HZSM-5具有较好的催化性能.在0~0.3%范围内提高Pt负载量可以提高催化剂的催化活性和生成C9以及C10 芳烃的选择性,降低非芳烃产物的选择性.较低的反应温度、较高的苯/丙烷摩尔比和较高的空速有利于烷基芳烃的生成.  相似文献   

9.
La/HZSM—5催化剂上丙烷的芳构化反应研究   总被引:5,自引:0,他引:5  
采用浸渍法和离子交换法制备了La/HZSM-5分子筛催化剂,用于丙烷芳构化反应,利用XRD,SPS,FT-IR,NH3-TPD技术考察了La对HZSM-5分子筛结构和表面酸性的影响,引入La后能显著提高HZSM-5的丙烷芳构化活性,其中由离子交换法得到的催化剂效果最佳,在反应温度550度,空速600h^-1条件下,丙烷转化率和芳烃选择性分别达到94.58%,68.99%,在La/HZSM-5中分子筛结晶度下降,B酸中心减少,L酸中心增多,离子交换法制备的催化剂比浸渍法催化剂的这种变化更显著,同时更有利于La3 进入分子筛孔道内,并与分子筛产生强相互作用,新增加的L酸中心可能是芳构化反应的活性中心。  相似文献   

10.
硼对HZSM-5分子筛酸性和择形性的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
吴超  季东  董鹏  李红伟  李贵贤 《分子催化》2019,33(6):524-530
用不同含量的硼对HZSM-5分子筛进行改性,研究硼对HZSM-5酸性和对甲苯甲醇烷基化制对二甲苯反应的影响.通过XRD, SEM, N_2物理吸脱附, NH_3-TPD和Py-IR对催化剂进行表征,结果表明硼改性的催化剂仅有弱酸位,随着硼含量增加,弱酸位酸量和B/L增加,并且硼改性后在HZSM-5分子筛中产生新的弱B酸位.弱酸位有利于抑制二甲苯异构化反应和二甲苯进一步烷基化反应,提高对二甲苯选择性.实验结果表明随着弱酸酸量的增加,对二甲苯选择性增加,甲苯转化率减小.与HZSM-5相比, 1.7%B/HZSM-5催化剂弱酸酸量增加了226%,因此在1.7%B/HZSM-5催化剂上获得98.57%的对二甲苯选择性.  相似文献   

11.
钛钨改性HMS的合成及催化氧化苯甲醇合成苯甲醛   总被引:4,自引:0,他引:4  
宋贺  贾丽华  郭祥峰 《应用化学》2009,26(2):168-172
通过改变硅钛摩尔比和硅钨摩尔比合成了Ti-HMS和Ti/W-HMS型分子筛,并进行了NH3-TPD测试分析. 结果表明,当n(Si)∶ n(Ti)=30∶ 1、n(Si)∶ n(W)=400∶ 1时,分子筛的酸量最大. 利用上述不同HMS为催化剂,ω(H2O2)=30%的H2O2水溶液为氧化剂,在无有机溶剂及相转移催化剂条件下,氧化苯甲醇制备苯甲醛. 结果表明,Ti/W-HMS可选择性氧化苯甲醇制备苯甲醛;催化剂的酸量和酸强度越大,越有利于提高催化活性和选择性. 利用Ti(30)/W(400)-HMS为催化剂,当n(醇)∶ n(H2O2)=1∶ 2、ω(催化剂)=4%、反应时间为5 h时,苯甲醇的转化率和苯甲醛的选择性分别为72.6%、96.9%. 催化剂重复使用4次后,苯甲醇的转化率和苯甲醛的选择性分别为63.2%、89.1%.  相似文献   

12.
以HZSM-5(SiO2/Al2O3=38)为载体,偏钨酸铵为钨源制备了双功能催化剂WC/HZSM-5,考察了其催化正己烷芳构化反应性能,并采用X射线衍射、扫描电子显微镜、X射线能量散射谱和程序升温氨脱附等手段对催化剂进行了表征,探讨了制备方法和WC含量对WC/HZSM-5催化剂性能的影响.结果表明,采用原位还原碳化法制备的WC/HZSM-5(RC)催化剂上正己烷芳构化反应性能优于浸渍法制备的WC/HZSM-5(IP).5%WC/HZSM-5(RC)样品在反应初始阶段芳烃选择性为10.28%,而HZSM-5上的仅为2.56%.WC/HZSM-5(RC)催化剂上反应产物中轻质芳烃(苯、甲苯和二甲苯)含量增加,重质芳烃C9+含量降低,其催化性能优于Pt/HZSM-5催化剂.产物分布的变化可能是由于WC与分子筛间的协同作用所致.  相似文献   

13.
采用晶种导向的方法, 以四丙基溴化铵为模板剂, 乙胺为矿化剂, 硅溶胶为硅源, 氯化铝为铝源, 60 nm Silicate-1为晶种, 于水热条件下合成了具有不同b轴厚度及硅铝比的二维 HZSM-5纳米片. 采用不同碱源对分子筛进行碱处理, 其中经NaOH处理以及NaOH与四丙基氢氧化铵(TPAOH)联合处理得到了二维多级孔HZSM-5纳米片. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 Ar吸附-脱附、 氨-程序升温脱附(NH3-TPD)、 X射线荧光光谱(XRF)和X射线光电子能谱(XPS)等手段对催化剂的结构和酸性进行了表征, 考察了硅铝比和b轴厚度对催化苯与稀乙烯烷基化反应的影响. 研究结果表明, 在360 ℃, 1.4 MPa, 苯烯比为6, 乙烯体积分数为15%, 乙烯质量空速(WHSV)为1.5 h-1的反应条件下, 随着硅铝原子比从80提高至200, 苯的转化率略有下降, 乙基选择性保持在99.2%以上, 但甲苯及二甲苯选择性分别从0.11%和0.09%均下降至0.05%. 将不同b轴厚度的HZSM-5纳米片催化剂在苯烯比为1的条件下进行实验发现, 硅铝比为160的大晶粒HZSM-5催化剂失活严重, 反应50 h时苯的转化率从34.6%下降至8%, 二甲苯选择性达到0.37%; 而b轴厚度为100 nm的二维 HZSM-5纳米片作为催化剂时苯的转化率稳定在44.0%, 乙基选择性为94.8%, 二甲苯选择性下降至0.22%, 并在100 h内保持反应性能不变.  相似文献   

14.
苯乙烯是一种重要的化工原料 ,是合成聚苯乙烯等高分子材料的单体 .目前 ,工业上苯乙烯的生产采用两步法工艺 ,即苯和乙烯在 Al Cl3或 HZSM- 5催化剂上烷基化合成乙苯 ,然后乙苯再在含有助催化剂的氧化铁系催化剂上脱氢得到苯乙烯 .在另一部分工作中 ,我们采用金属负载 HZSM- 5分子筛催化剂研究了苯和乙烯一步合成苯乙烯反应 ,结果表明 ,Co/HZSM- 5是较好的催化剂[1] ,并提出了反应是经过中间物乙苯脱氢生成苯乙烯的机理 [2 ] .实验还发现 ,催化剂的焙烧和还原温度对苯乙烯的收率有很大影响 .本工作结合 XRD,TPR和 DRS等方法对 Co…  相似文献   

15.
Ni/ZrO2催化剂上甲烷水蒸气重整反应的研究   总被引:4,自引:2,他引:4  
研究了Ni/ZrO2催化剂对甲烷水蒸气重整制合成气的反应性能。考察了催化剂的还原温度、载体焙烧温度以及反应温度、原料配比和空速等对催化剂性能的影响。利用XRD、TEM、XPS等手段对催化剂的织构形貌进行了表征。研究表明,Ni/ZrO2催化剂用于甲烷水蒸气重整制合成气不仅具有较高的活性,也具有较好的稳定性。水蒸气比增加,CH4转化率增大、CO选择性下降。CH4转化率及CO选择性均随空速增大而下降。使用10%Ni/ZrO2催化剂,在650 ℃、空速1.984×104 h-1、原料气配比H2O∶CH4∶N2=2∶1∶2.67的条件下,获得CH4转化率85%、CO选择性70%的结果。  相似文献   

16.
采用四丙基氢氧化铵(TPAOH)处理HZSM-5分子筛,并负载金属Mo。利用XRD、低温氮气吸附、27Al MAS NMR、29Si MAS NMR和NH3-TPD等表征技术对TPAOH改性前后催化剂的结构和酸性进行了研究,考察了其对甲烷甲醇共芳构化反应的催化性能。结构表征结果表明,适量的TPAOH改性可提高HZSM-5分子筛的相对结晶度,样品中介孔含量明显增加并且弱酸量和强酸量也有所增加。反应性能测试表明,以6 % Mo 负载的HZSM-5(6Mo/HZSM-5)为催化剂,在700 ℃、甲烷体积空速为2000h-1的反应条件下,甲烷中添加少量甲醇(nCH4/nCH3OH=20)时,甲烷转化率稳定在10 %左右,苯选择性在70 %以上,C7-C9高碳芳烃的选择性为4 %。在0.1 M TPAOH改性6Mo/HZSM-5催化剂上,甲烷转化率为8%左右,苯选择性稳定在60%以上,C7-C9高碳芳烃的选择性提升到10-17 %。利用TG和TPO技术对反应后样品的积碳情况进行了表征,发现甲烷甲醇共进料时催化剂积碳量由甲烷单独进料时的15%降低至5%,0.1 M的TPAOH改性后积碳量则进一步降低至1.4 %。TPAOH改性的催化剂上介孔含量的增加和强酸中心上的稠环芳烃含量的减少是反应后积碳量显著下降的主要原因,这有利于提高芳构化催化剂的稳定性和碳原子的有效利用率。  相似文献   

17.
在连续流动固定床装置上,探讨了不同酸性HZSM-5上C6~8混合链烃(以下简称混合烃)和邻二甲苯加氢裂化的变化规律,并在稳定条件下考察了反应温度、质量空速以及氢烃体积比等反应参数的影响。混合烃的加氢裂化伴随着芳构化反应,酸性较弱的HZSM-5主要发生加氢裂化反应,裂化产物以正构烷烃为主,甲烷和异构烷烃较少。酸性强的HZSM-5上,起初以芳构化反应为主,稳定之后产物分布与弱酸催化剂接近。混合烃的加氢裂化反应表现出明显的温度效应,而质量空速和氢烃体积比的影响较小。在380℃、3.0 MPa、质量空速1.02 h-1、氢烃体积比1 000的条件下,100 h内混合烃的转化率均在99%以上,稳定的裂化反应选择性在95%以上。邻二甲苯发生加氢裂化及异构、歧化反应,酸性强的HZSM-5裂化产物收率高,裂化产物分布与混合烃的基本相同。稳定的邻二甲苯裂化反应选择性小于10%。  相似文献   

18.
以无水乙醇为溶剂,草酸为沉淀剂,采用悬浮共沉淀法,一步合成CuO-ZnO-Al2O3/HZSM-5双功能催化剂.并研究了该催化剂在CO2加氢合成二甲醚反应中的催化性能,考察了CO2加氢合成甲醇组分(CuO-ZnO-Al2O3)与甲醇脱水组分(HZSM-5)配比对催化剂性能的影响以及催化剂的稳定性.结果表明,双功能催化剂加氢与脱水组分配比为8∶1时,对CO2加氢直接合成二甲醚有较高的催化性能:在固定床反应器中,温度为270℃,压力为3.0 MPa,空速为4 800 h-1的反应条件下,CO2的单程转化率达到29.8%,二甲醚的选择性和收率分别达到53.8%和16%.XRD、BET、TPR和NH3-TPD对催化剂结构表征结果表明,不同组分配比影响双功能复合催化剂中脱水组分的酸性和加氢组分的结晶度、晶粒尺寸、CuO的还原性.  相似文献   

19.
以水为催化剂溶剂与原料乙苯组成液-液非均相体系,以NHPI结合CoSPc组成催化体系,在TBAB为相转移催化剂的作用下,对乙苯的氧化反应条件进行了研究.研究发现乙苯在该催化体系中的最佳氧化条件依次是:水油体积比为3∶1;n(TBAB)∶n(乙苯)=1∶40;n(NHPI)∶n(乙苯)=1∶10,n(NHPI)∶n(CoSPc)=24∶1,反应温度110℃,氧气压力0.75 MPa,搅拌速率350 rpm,反应时间0.5 h.在最佳反应条件下乙苯转化率为60.6%,苯乙酮的选择性为95.2%,1-苯乙醇的选择性为4.5%,产物总选择性达到了99.7%.在此基础上延长反应时间并不能提高乙苯的转化率,苯乙酮的选择性也会下降,研究发现NHPI的分解是乙苯转化率不随反应时间的延长而提高的原因,而苯乙酮的过度氧化为苯甲酸是产物选择性下降的原因.  相似文献   

20.
制备了系列Hβ分子筛催化剂Cat T(T为焙烧温度)和系列负载型催化剂CatR550[R=H2SO4(a),(NH4)2S2O8(b)和(NH4)2SO4(c)]。以邻苯二甲酸酐(2)和乙苯(3)经Friedel-Crafts酰基化反应合成2-乙基葸醌(1)为探针反应,考察了T和R对其催化活性的影响。结果表明:最佳焙烧温度为550℃;最佳R为c。以Cat550为催化剂对合成1的反应条件进行了优化,考察了反应温度,反应时间,Cat550用量及r[n(2)∶n(3)]对酰化反应的影响。在最佳反应条件[2 40 mmol,n(2)∶n(3)=1∶25,Cat550用量2.0 g,于250℃反应5 h]下,2的转化率为30.6%,1的选择性为33.8%,1的收率为10.3%。以Catc550为催化剂,在c(c)为1.75 mol·L-1时,在相同的最佳反应条件下,2的转化率为39.0%,1的选择性为43.4%,1的收率为16.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号