首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
煤焦的孔隙结构是影响气化反应的重要因素之一,本文通过测定部分气化焦样的比表面积及其孔隙结构,详细地研究了烟煤焦的孔隙结构在气化过程中的变化规律及其影响因素,结果表明,煤焦的孔隙结构在气化过程中的变化不但取决于原煤的性质,而且还取决于气化介质与气化温度;在相同条件下气化至相同气化率时总比表面积和孔体积大小顺序为彬县>神木>王封煤焦,总比表面积与微孔比表面积均随温度的升高而降低,在反应的前期CO2与H2O两种气氛下产生的总比表面积与微孔比表面积相当,但在反应后期CO2气氛下能够产生更多的总比表面积与微孔比表面积。  相似文献   

2.
在滴管炉内对中国三种不同煤阶的典型煤种在800~1 400 ℃进行快速热解实验,利用XRD和氮气气体吸附法对所得煤焦进行微晶结构和孔隙特征分析,在热重分析仪上进行CO2气化反应活性的测定,研究不同热解温度煤焦结构特性与气化活性之间的关系。结果表明,随着热解温度的升高,内蒙古褐煤焦和神府烟煤焦的比表面积在1 200 ℃达到极大值,但气化活性却相对较低;遵义无烟煤焦在800~1 200 ℃气化活性逐渐提高,但比表面积在900 ℃达到极大值,表明煤焦比表面积与气化活性不存在严格关联。煤焦碳微晶结构变化所反映出煤焦石墨化进程与煤焦气化活性随热解温度的变化具有一致的变化趋势,表明快速热解煤焦的碳微晶结构变化对煤焦气化活性的影响更大。  相似文献   

3.
煤焦在燃烧过程中孔隙结构变化的模拟   总被引:4,自引:1,他引:4  
煤焦在燃烧过程中的物理特性,如比表面积和孔径分布会发生连续变化,直接测量煤焦在燃烧过程中的孔隙结构变化很困难,但可以通过合适的数学模型来观察,二维的圆柱孔模型已大量用来对煤焦气化与燃烧过程中表面积和孔隙结构的变化进行模拟,这个模型把孔隙分成两大部分--大孔与小孔,因为小孔构成比表面的绝大部分,所以在反应过程中比表面积的变化可以由单一小孔模型来拟合,本文采用了用Tseng和Edgar提出的孔模型对几  相似文献   

4.
在常压、1000℃下,测定了两种不同煤化程度的无烟煤焦和一种脱灰无烟煤焦的水蒸气和CO2的气化反应性。并以N2和CO2为吸附质,测定了原煤焦的孔结构特征;以CO2为吸附质,测定了无烟煤焦在气化过程中微孔结构的变化。考察了矿物质对无烟煤焦孔结构变化的影响。结果表明,水蒸气和CO2对无烟煤焦的气化反应都有微孔的产生和扩展作用。无烟煤焦水蒸气气化反应性与煤焦的微孔比表面积成正比,但无烟煤焦CO2气化反应性与煤焦的微孔比表面积没有依存关系。煤中矿物质对无烟煤焦气化过程中孔结构的变化不产生影响。  相似文献   

5.
高温下煤焦的碳微晶及孔结构的演变行为   总被引:1,自引:0,他引:1  
以贵州煤为原料,在热解温度950℃~1400℃制备了各种慢速和快速热解焦,主要对高温热解过程中煤焦的碳微晶和孔结构的演变行为进行了研究,同时也研究了高温气化过程中煤焦的孔结构变化规律。结果表明,慢速热解焦和快速热解焦的C和H含量明显不同;随热解温度的升高,煤焦的碳微晶结构向有序化方向发展,但慢速热解煤焦比快速热解煤焦的"石墨化"程度大;快速热解煤焦的微孔比表面积和微孔容积明显高于慢速热解煤焦,即快速热解煤焦的孔隙结构明显比慢速热解煤焦发达;在气化反应初期,煤焦的微孔比表面积下降,微中孔比表面积增加,反应后期煤焦的总比表面积快速下降。  相似文献   

6.
以氮气为吸附质,测定了部分气化石油焦的比表面积、孔容及其随孔径的分布,研究了石油焦的孔隙结构在气化过程中的变化及其对气化反应的影响。结果表明,石油焦的孔主要由微孔组成;水蒸气条件下气化时石油焦的比表面积、孔容随碳转化率增加而不断增大;不同孔隙率和比表面积的石油焦,其气化反应速率曲线变化趋势不同;石油焦的比气化反应速率与孔隙结构有着紧密的关系,比气化反应速率和有效比表面积之间有着较好的线性关系。  相似文献   

7.
基于煤炭地下气化过程中石灰岩可能影响煤焦的组成和结构,借助煤炭地下气化模拟实验系统对不同石灰岩掺量(质量分数为0-30%)的褐煤进行水蒸气气化,并采用低温N_2吸附-脱附、XRD和FT-IR等分析手段研究石灰岩对褐煤模拟地下气化残焦的组成、比表面积及孔结构特征、微晶结构和表面官能团等物理化学性质的影响。结果表明,石灰岩对煤焦的元素组成有较大影响。石灰岩可促使煤焦中的微孔向中孔发育,增大煤焦的比表面积和孔容积;当石灰岩掺量从0增加到30%时,煤焦的比表面积增大21.91%,介孔率增加21.49个百分点。XRD分析表明,钙的存在破坏煤焦的芳香结构,使煤焦无序化程度增加,晶面间距(d_(002))增大,抑制煤焦的石墨化发展倾向。FT-IR分析表明,石灰岩存在下,煤焦的羟基官能团减少。  相似文献   

8.
以含油污泥与配合煤为原料在850-1150℃热解制得焦样,采用N_2吸附-脱附和X射线衍射(XRD)分析煤焦孔隙结构及碳微晶结构,并运用热重分析(TGA)考察热解温度和含油污泥添加量对煤焦气化反应活性的影响。结果表明,提高热解温度和添加含油污泥能促进煤焦形成更加丰富的孔隙结构,强化煤焦-CO_2气化反应接触并抑制煤焦石墨化进程,从而提高煤焦气化反应活性;然而,热解温度过高或添加油泥量过多则会致使煤焦结构致密或孔隙堵塞,气化反应活性反而降低。  相似文献   

9.
煤及煤焦微观结构特征与气化反应性   总被引:4,自引:2,他引:4  
研究了不同煤化度煤及煤焦的微观结构及其对气化反应性的影响。结果表明,褐煤焦具有丰富的分支孔系统和较大的比表面积,并含有较多对气化有催化作用的可交换阳离子。无烟煤焦分支孔贫乏,比表面积很小。煤焦的总孔容、比表面积和芳核大小之间有很好的对应关系。不同煤化度煤焦气化反应性差异很大,脱矿物质后煤焦反应性差异显著减小,但是脱矿物质前后煤焦的反应性随煤化程度的变化趋势相似。  相似文献   

10.
基于热重分析仪开展负载碳酸钠神府烟煤/遵义无烟煤煤焦气化实验,并借助扫描电子显微镜和孔结构及比表面积分析仪表征焦样孔结构及表观结构变化,考察了反应温度(650-800℃)、气化剂(水蒸气、二氧化碳)及碳酸钠负载量(钠离子负载量2.2%、4.4%、6.6%,质量分数)对神府烟煤/遵义无烟煤焦样气化反应活性的影响。结果表明,碳酸钠有利于促进神府/遵义煤热解过程孔隙结构的发展。在二氧化碳气氛下,适宜催化剂负载量使神府烟煤反应活性提高,过多负载催化剂堵塞煤焦内部孔隙结构,使得气化反应活性降低,遵义无烟煤反应活性随负载量增加而提高,两者反应活性均随温度升高而提高。在水蒸气气氛下,神府烟煤/遵义无烟煤在一定条件下反应活性随催化剂负载量增大、温度升高而提高。碳酸钠的添加能够在保证气化反应性的前提下降低气化反应温度和活化能。  相似文献   

11.
神府煤焦与水蒸气、 CO2气化反应特性研究   总被引:3,自引:8,他引:3  
采用高温微量热天平和自制水蒸气发生装置进行神府煤焦与水蒸气和CO2气化实验,考察热解速率、不同气化剂(CO2和水蒸气)以及温度对气化反应的影响.用扫描电镜和吸附仪测定煤焦的初始结构.两种煤焦孔径为2 nm~170 nm的孔占总孔容的90%以上.神府快速煤焦(FP)与水蒸气气化活性比慢速煤焦(SP)高4.16倍,FP比SP挥发分脱除快,破坏其孔结构,减少缔合机会和二次反应.SP的BET比表面积为1.077 7 m2/g,FP的BET比表面积为1.893 9 m2/g.SP与水蒸气气化活性是CO2的9.94倍,FP与水蒸气的气化活性是CO2的7.15倍,水蒸气比CO2气化时进入的孔径范围广及水蒸气比CO2更容易解离.同种煤焦与水蒸气和CO2气化时的气化速率与转化率之间的趋势相近.用随机孔模型拟合并求取反应动力学参数,温度对SP与水蒸气、CO2反应速率,以及FP与水蒸气反应速率影响相似,而对FP与CO2反应速率影响明显比前三个反应要小.  相似文献   

12.
采用高温热台显微镜观测了片状煤焦颗粒CO_2气化过程中的形态演变,并通过拉曼光谱分析了气化半焦的碳微晶结构,同时研究了气化温度(1000-1200℃)和煤焦初始当量直径(1.00-1.60 mm)对其CO_2气化过程中的形态及结构演变的影响规律。结果表明,与反应前期相比,反应后期的颗粒收缩(面积、体积、当量直径)更加剧烈。在所研究的气化温度范围内,随着气化温度的升高,煤焦颗粒的面积收缩率和体积收缩率逐渐减小。煤焦初始粒径显著影响颗粒收缩,1100℃气化温度下,颗粒的收缩趋势在初始粒径1.30 mm处出现转折。煤焦气化过程中碳消耗主导着表观密度的变化,在所研究的温度和粒径范围内,当碳转化率达到80%时,表观密度比线性减小到0.4以下。在相同气化温度下,随着碳转化率的增加,煤焦的石墨化程度先减小后增加,无定形碳含量先增加再减小。  相似文献   

13.
高温下热解温度对煤焦孔隙结构的影响   总被引:4,自引:0,他引:4  
利用高温沉降炉在1500K~1800K制备京西无烟煤煤焦,使用化学吸附法测定不同热解温度下煤焦比表面积及孔容积与孔径的分布特征,并采用SEM观察煤焦颗粒表面的形态,分析了高温下热解温度对煤焦孔隙结构的影响规律。结果表明,煤焦的比表面积主要由孔径小于10nm的微孔和中孔构成,而其孔容积则主要由孔径为2nm~50nm的中孔构成。高温下煤焦比表面积和孔容积随热解温度的升高,呈现先增大后减小的非单调变化现象,转折温度约为1600K。出现这种变化的主要原因是煤焦在热解温度超过1600K后开始烧结,产生较为光滑致密的表面结构,部分孔隙封闭。  相似文献   

14.
氢气存在下的煤焦水蒸气气化: I 反应特性研究   总被引:2,自引:2,他引:0  
分别以水蒸气/惰性气混合气、水蒸气/氢气混合气作为气化剂,在常压和875℃~950℃下,采用热天平对1200℃快速热解神府煤焦的气化反应特性进行了研究,并考察了气化过程中煤焦结构的变化及其对气化反应的影响。实验发现,煤焦在水蒸气/氢气作为气化剂条件下的气化反应过程可分为两个阶段,首先是反应急剧进行的阶段,然后是反应速率趋于稳定的阶段,且反应速率接近于石墨的反应速率。该现象与煤的化学结构有关,第一阶段气化剂与活泼性物质 碳氢支链、含氧官能团的反应,第二阶段气化剂与芳香碳的反应;煤焦在水蒸气/氢气气氛下,气化过程中的碳难以转化完全。神府煤焦的SEM表明,煤焦表面有大量的裂缝、孔隙、褶皱、及碎块。碎块表面光滑,这些物质覆盖了内部裂缝与孔隙。煤焦和水蒸气/氢气气化残焦(碳转化率68%)由于气化反应,其碎块减少,表面的大孔暴露出来。比较两种气化剂条件下的气化反应过程发现,水蒸气/惰性气气化反应速率随碳转化率的增加而缓慢均匀地下降;水蒸气/氢气气化反应速率随碳转化率增加先迅速降低,而后较缓慢降低。  相似文献   

15.
850℃下,利用管式炉制备了不同转化率的棕榈壳CO2气化焦,通过热重分析仪研究了气化焦的CO2气化反应性,采用比表面积分析、拉曼光谱、X射线荧光光谱和扫描电镜-能谱等分析手段,考察了气化焦孔隙结构、碳组成、矿物元素含量与分布随转化率的变化。结果表明,在CO2气化过程中,随着转化率的提高,棕榈壳气化焦固定碳的含量逐渐降低,有序化碳的相对含量为0.30~0.33,对气化过程起到一定的抑制作用;灰分含量逐渐增加,但气化反应指数Rs呈现先降低后升高的过程。转化率小于23%时,Rs与气化焦比表面积的变化趋势一致;23%< 转化率< 31%时,Rs基本不变;31%< 转化率< 68%时,比表面积随转化率线性增加,Rs取决于孔隙比表面积、矿物元素催化2个因素的协同作用,当转化率> 56 %时,该催化作用变得明显,同时碳的有序化程度开始降低;转化率> 68%时,Rs主要受矿物元素的催化作用控制。  相似文献   

16.
以碳酸钾为催化剂,通过高温热台原位研究气化阶段神府/遵义煤焦与催化剂的交互作用,采用热重分析仪,考察气化温度(750~950℃)、催化剂负载量(钾离子负载量2.2%、4.4%、6.6%(质量分数))对煤焦气化反应性的影响。结果表明,K2CO3有利于促进神府/遵义煤热解过程孔隙结构的发展。气化温度低于碳酸钾熔点时,大部分煤焦颗粒与CO2的反应以颗粒收缩形式进行,当气化温度高于碳酸钾熔点时,对于神府煤焦,随着碳骨架快速消耗,在反应后期可观察到明显的熔融态钾催化剂扩散现象;而对于遵义煤焦,其碳骨架稳定消耗缓慢,大部分熔融态钾催化剂存在于煤焦表面。神府/遵义煤焦气化反应活性随碳酸钾负载量的增加而提高。钾催化剂对神府煤焦的催化作用随气化温度的升高先增强后减弱,转折温度点接近碳酸钾熔点,原因为熔融态钾催化剂流动性好,造成部分孔隙结构堵塞,导致钾催化剂催化作用减弱。  相似文献   

17.
为了研究工业废碱液对煤水蒸气反应的催化作用,选取内蒙古王家塔煤(WJT),负载造纸黑液(BL)进行高压水蒸气气化性能评价。分别考察了温度和负载量对催化活性的影响,并与分析纯碳酸钠(SC)催化活性进行对比。固定床小试评价结果表明,700-750℃,催化剂活性随负载量增加呈先增大后减小的趋势,BL最佳负载量为3%Na,并且催化活性优于SC催化剂;温度升高,催化活性更显著。采用N_2吸附-脱附等温实验考察BL对煤焦比表面积和孔结构的影响,结果表明,随着BL负载量增加到3%,煤焦比表面积和孔容都增加,从而有利于提供更多的气化活性位点,提高煤焦反应活性;随着负载量的进一步增加,催化剂过量造成堆积堵孔,导致催化剂的比表面积和孔容降低,从而降低了气化反应速率。  相似文献   

18.
对新疆后峡煤和滴管炉内的快速热解焦的比表面积、平均孔径、粒径和表面结构进行了分析,研究快速热解过程中原煤的形态变化。将热解焦在热重分析仪上进行气化实验,研究形态变化对气化反应的影响。结果表明,随热解温度的升高,煤焦比表面积与平均孔径变化趋势不同;快速热解过程中煤颗粒除破碎外,还会发生膨胀及凝聚形态变化;不同热解碎片气化趋势不一样,1200℃热解温度下的热解焦气化稳定性最好。  相似文献   

19.
快速热处理石油焦与煤的微观结构变化及气化活性分析   总被引:1,自引:0,他引:1  
为了研究在接近工业气化条件下石油焦和煤的结构和气化活性变化规律的差异,在滴管炉装置内,800~1 400℃对两种石油焦和一种烟煤进行快速热处理。用比表面积孔隙分析仪、XRD分析仪考察快速热处理对石油焦和煤的孔隙结构、碳微晶结构的影响,用热重分析仪考察不同温度快速热处理后石油焦和煤的CO2气化活性。结果表明,石油焦与煤相比,孔隙结构主要由微孔组成,随快速热处理温度的升高,石油焦和煤微孔比表面积和孔容均先增大后逐渐减小;快速热处理降低了石油焦和煤的石墨化程度,石油焦碳微晶结构变化主要表现在堆垛高度的变化,而煤的碳微晶结构变化在衍射峰对应的2θ002值、晶面间距和堆垛高度上均有体现;石油焦和煤的气化活性随快速热处理温度升高的变化趋势不同,但均与碳微晶结构参数(石墨化程度)的变化紧密相关。  相似文献   

20.
煤焦水蒸汽气化过程中不同煤种的反应特性与碳结构变化   总被引:2,自引:1,他引:1  
为探讨各种因素对不同煤种气化反应速率的影响,在微分反应器中,于常压下,对20种煤焦进行了催化、非催化水蒸汽气化实验。得出了气化速率与煤的含碳量、比表面积和煤的碳结构的关系以及含碳量与催化效果的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号