首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Using time-resolved techniques of 337 and 248 nm laser flash photolysis, the photo physical and photochemical processes of riboflavin (RF, vitamin B2) were studied in detail in aqueous solution. The excited triplet state of riboflavin (3RF*) was produced with 337 nm laser, while under 248 nm irradiation, both3RF* and hydrated electron (eaq) formed from photoionization could be detected. Photobiological implications have been inferred on the basis of reactivity of3RF* including energy transfer, electron transfer and hydrogen abstraction. The RF·+ was generated by oxidation of SO4 ·-radical with the aim of confirming the results of photolysis.  相似文献   

2.
Using time-resolved techniques of 337 and 248 nm laser flash photolysis, the photo-physical and photochemical processes of riboflavin (RF, vitamin B2) were studied in detail in aqueous solution. The excited triplet state of riboflavin (3RF*) was produced with 337 nm laser, while under 248 nm irradiation, both 3RF* and hydrated electron (eaq) formed from photoionizationcould be detected. Photobiological implications have been inferred on the basis of reactivity of 3RF* including energy transfer, electron transfer and hydrogen abstraction. The RF.+ was generated by oxidation of SO4.- radical with the aim of confirming the results of photolysis.  相似文献   

3.
Quinones including menadione are ubiquitous in nature. They play important roles in aerobic respira- tion and photosynthesis[1,2]. In addition, exogenous quinones are used as antibiotics and anticancer drugs. Their function is closely related to their red…  相似文献   

4.
Reactive oxygen species (ROS) are generated dur- ing radiation, respiratory burst, normal metabolic processes and so on. There are enzymatic and non-enzymatic antioxidants such as superoxide dis- mutase (SOD), glutathione peroxidase (GSH-Px), vi- tamin E (VE) and carotenoids that can either inhibit or repair the ROS-induced damage. ROS is essential to maintain physiological homeostasis. However, exces- sive ROS give rise to oxidative damage to proteins, lipids and DNA which related t…  相似文献   

5.
A molecular beam of N2O4 molecules was photodissociated by an excimer laser at 193 and 248 nm. The time-of-flight distribution of NO2 photofragments is consistent with the formation of two electronically excited NO2* molecules in the ā(2B2) or B?(2B1) state. Visible emission from NO2* was observed in the photolysis at both 193 and 248 nm excitation. The parallel angular distribution of the NO2 photofragments shows that at.193 nm N2O4 has a transition dipole along the N-N axis and the dissociative lifetime is estimated to be less than 1 ps.  相似文献   

6.
The transient species of gallic acid(GA)have been studied by 266 nm nanosecond laser flash photolysis inaqueous solution and acetonitrile.The intermediate with absorption at 320 nm was identified as excited triplet state(~3GA~*),the decay rates of which were obtained in aqueous solution and acetonitrile respectively.Energy transferfrom ~3GA~* to β-carotene was observed and the energy transfer rate constant k_(ent)was determined to be 2.2×10~9mol~(-1)·L·s~(-1).GA underwent photoionization during photolysis and the quantum yield of photoionization was de-termined to be 0.12 at room temperature with KI as a reference.  相似文献   

7.
Investigations using CIDEP techniques showed that an H-atom abstraction from phenol and the electron transfer from 1,2,4,5-tetramethoxybenzene to photoexcited 2,3-dibromo-1,4-naphthoquinone (DBNQ) and 2,3-dichloro-1,4-naphthoquinone (DCNQ) in the polar media originated from their triplet states. Nanosecond laser photolysis at 355 nm was carried out to determine the absorption spectra and coefficients of the corresponding triplet states, semiquinone, and anion radicals for a quantitative investigation of the mechanisms involved in the H-atom abstraction and the electron transfer. The steric hindrance of the substituted groups was indifferent to H-atom abstraction. The electronic structures of triplet DBNQ and DCNQ at 295 K were both revealed to be the mixed states of 3(n,π*) with a 3(π,π*) character.  相似文献   

8.
Photoinduced chemical reaction between thioxanthen-9-one (TX) and diphenylamine (DPA) were investigated by the nanosecond laser flash photolysis. With photolysis at 355 nm, the triplet TX (3TX*) is produced via a Franck-Condon excitation and intersystem crossing. In the transient absorption spectra of the reduction of 3TX* by DPA in pure and aqueous CH3CN, four bands are clearly observed and assigned to absorption of 3TX*, TXH·, TX·- and DPA·+, respectively. With the increase of solvent polarity, the blue-shift was observed for all absorption bands of the intermediates. With the aid of dynamic decay curves, an electron transfer followed by a protonation process is confirmed for the reduction of 3TX* by DPA. The quenching rate constants of 3TX* by DPA very slightly decrease from 9.7×109 L/(mol·s) in pure CH3CN, to 8.7×109 L/(mol·s) in CH3CN:H2O (9:1), 8.0×109 L/(mol·s) in CH3CN:H2O (4:1) and 7.5×109 L/(mol·s) in CH3CN:H2O (1:1). Therefore water plays a minor role in the title reaction, and moreover no obvious medium effect of solvent polarity is observed for the electron transfer between 3TX* and DPA, indicating that the 3* and 3ππ* states of TX have the approximate ability to attract an electron from DPA.  相似文献   

9.
In the past years extensive studies have been conducted on porphyrin-type photosensitizers because of their photosensitive activity. With regard to their interaction with many important macromolecules such as nucleic acids, proteins and lipids, porphyrin-type photosensitizers are capable of damaging numerous cells. They damage DNA via oxidation of four bases, especially guanine and cytosine pairs[1], damage protein by oxidation of (at least) two amino acids——cysteine and tryptophan residues…  相似文献   

10.
Quenching of O(1D2) by COF2 has been investigated by time-resolved resonance fluorescence monitoring of the product O(3PJ) following 248 nm pulsed laser photolysis of O3. The rate constant for total removal of O(1D2) by COF2 is (7.4 ± 1.2) × 10?11 cm3 molecule?1 s?1. 71 ± 7% of the quenching interactions result in formation of O(3PJ).  相似文献   

11.
Photochemistry of a 1: 1 FeIII-lactic acid complex, [Fe(Lact)]+, in aqueous solutions was studied by stationary photolysis, nanosecond laser flash photolysis (355 nm, 6 ns), and femtosecond pump-probe spectroscopy (400 nm, 200 fs). The quantum yield of photolysis of [Fe(Lact)]+ upon excitation at 355 nm is 0.4 and 0.22 in the deoxygenated and air-saturated solutions, respectively. Weak transient absorption in the range 500–750 nm was observed in the nanosecond experiments. It was assigned to a [FeII...-O-CH(Me)-COO·]+ radical complex. The spectral properties of the ligand-to-metal charge transfer excited state and the characteristic time of formation of the radical complex (1.5 ps) were determined in the femtosecond spectroscopy experiments. A reaction mechanism was proposed, which involves inner-sphere electron transfer in the excited complex with the formation of a radical complex [FeII...-O-CH(Me)-COO·]+ and its subsequent transformation to the end product of the photochemical reaction.  相似文献   

12.
A novel rhenium(I) bipyridyl complex 1a, [(4,4’-di-COOEt-bpy)Re(CO)3(py-NHCO-PTZ)PF6] and a model 1b, [(4,4’-di-COOEt-bpy)Re(CO)3(py-PTZ)PF6] (bpy is 2, 2’-bipyridine, py-NHCO-PTZ is phenothiazine-(10-carbonyl amide) pyridine and py-PTZ is 10-(4-picolyl) phenothiazine) were synthesized. Their photo-induced electron transfer (ET) reaction with electron acceptor methyl viologen (MV2+) in acetonitrile was studied by nanosecond laser flash photolysis at room temperature. Photoexcitation of 1 in the presence of MV2+ led to ET from the Re moiety to MV2+ generating Re(II) and methyl viologen radical (MV·+). Then Re(II) was reduced either by the charge recombination with MV·+ or by intramolecular ET from the attached PTZ, regenerating the photosensitizer Re(I) and forming the PTZ radical at 510 nm. In the case of 1b, the absorption for PTZ radical can be observed distinctly accompanied intermolecular ET, whereas not much difference at 510 nm can be detected for 1a on the time scale of the experiments. This demonstrates that the linking bridge plays a key role on the intramolecular ET in complex 1.  相似文献   

13.
The spectra and kinetics of short-lived intermediates formed from aqueous (0.1 N NaOH) solutions of the natural mixture of humic and fulvic acids (HFA) were studied by laser flash photolysis using excitation wavelengths of 337, 390, 470, and 520 nm. Laser photolysis of HFA with light of 520 and 470 nm results in the formation of triplet excited states (THFA) characterized by the broad absorption spectrum with a maximum near 630 nm and lifetimes of 0.15 ms in deoxygenated solutions. The formation of two types of THFA with lifetimes of 0.1 and 2 ms and absorption spectra with maxima at 570 nm is observed under photolysis with light of 337 and 390 nm. The estimation of quantum yields of THFA gives 1 and 0.3% under photolysis with excitation wavelengths of 337 and 520 nm, respectively. The rate constants of THFA quenching by molecular oxygen are equal to (7—8)·108 L mol–1 s–1.  相似文献   

14.
The technique of laser photolysis of alkyl and perfluoroalkyl iodides at 266 nm followed by time-resolved detection of the 1.3-μm emission from I*(2P1/2) has been used to measure the rate constants for deactivation of I* by CH3I, C2H5I, CF3I, and CH4. The recommended values are (2.76± 0.22) × 10?13, (2.85 ± 0.40) × 10?13, (3.5 ± 0.5) × 10?17, and (7.52 ± 0.12) × 10?14, respectively, in units of cm3 molecule?1 S?1.  相似文献   

15.
The laser flash photolysis of pyrazine in water and in organic solvents has been examined. The 3(n, π*) state in water has absorption bands at 230, ≈ 260, ≈ 295, ≈ 640, 700 and 810 nm, and decays with k = 2.2 × 105 sec?1. It is quenched by oxygen with kq = 3.2 × 109 M?1 sec?1 and by various H-atom donors, e.g., kq = 1.3 × 108 M?1 sec?1 for isopropyl alcohol. On reaction with H-atom donors, the chemistry of 3(n, π*) pyrazine produces the neutral pyrazyl-radical and the dihydro radical cation, whose characteristic absorption spectra have been identified. These results are discussed by comparison with 3(π, π*) diazines and with 3(n, π*) aromatic carbonyl compounds.  相似文献   

16.
He‐Rng Zeng 《中国化学》2002,20(12):1546-1551
The photoinduced electron‐transfer reaction of N, N, N', N'‐tetra‐(p‐methylphenyl)‐4,4'‐diamino‐1,1'‐diphenyl ether (TPDAE) and fullerenes (C60/C70) by nanosecond laser flash photolysis occurred in benzonitrile. Transient absorption spectral measurements were carried out during 532 nm laser flash photolysis of a mixture of the fullerenes (C60/C70) and TPDAE. The electron transfer from the TPDAE to excited triplet state of the fullerenes (C60/C70) quantum yields and rate constants of electron transfer from TPDAE to excited triplet state of fullerenes (C60/C70) in benzonitrile have been evaluated by observing the transient absorption bands in the near‐IR region where the excited triplet state, radical anion of fullerenes (C60/C70) and radical cations of TPDAE are expected to appear.  相似文献   

17.
Photoacoustic measurements are described giving branching ratios for the I(2P12) and I(2P32) atom production following vapour-phase photolysis of CH3I. A range of excitation wavelengths are used from the long wavelength tail up to 248 nm. The presence of three bands is shown within the σ* ← n continuum; in the strong-coupling model these are E ← A1(⊥), A*1 ← A1(||) and E ← A1(⊥) with only the A*1 ← A1 transition giving excited iodine atoms.  相似文献   

18.
The rate constants for the reaction of NO3· with sulfur compounds in acetonitrile have been determined by the flash photolysis method. The rate constant for dimethyl sulfone (2.7 × 104 M?1s?1 at ?10°C) is larger than that of the deuterium derivative, indicating that NO3· abstracts the hydrogen atom from dimethyl sulfone. In the case of dimethyl sulfide, the rate constant was evaluated to be 1.5 × 109 M?1 s?1 at ?10°C; the transient absorption band attributable to the cation radical was observed after the decay of NO3·, suggesting the electron transfer reaction from the sulfide to NO3·. For diphenyl sulfide and dimethyl disulfide, the electron transfer reactions were also confirmed. For dimethyl sulfoxide, the reaction rate constant of 1.2 × 109 M?1 s?1 (at ?10°C) was not practically affected by the deuterium substitution, suggesting that NO3· adds to sulfur atom forming (CH3)2?(O)-ONO2. On the other hand, for diphenyl sulfoxide, the electron transfer reaction occurs. By the comparison of these rate constants in acetonitrile solution with the reported rate constants in the gas phase, the change of the reaction paths was revealed.  相似文献   

19.
The photochemical reaction process of anthraquinone-2-sodium sulfonate (AQS) in the mixture of water (H2O) and N-butylpyridinium tetrafluoroborate ([BPy][BF4]) was studied using the laser flash photolysis technique. Experimental results show that the excited triplet of AQS (3AQS*) could react rapidly with H2O and the transient absorption spectra greatly changed by increasing the volume fraction of the ionic liquid (VIL) in [BPy][BF4]/H2O mixtures. The absorbance at 510 nm increased gradually with increasing VIL when 0< VIL< 0.1. By contrast, the absorbance decreased gradually when VIL>0.1. Otherwise, the absorbance of the band near 380 nm steadily increased. The apparent kinetic parameters of transient species B and 3AQS* are obtained approximately. 3AQS* abstracting hydrogen from [BPy]+ was also explored. It was deduced that the 350-420 nm band was the superposition of the peaks of 3AQS* and AQSH·. The two reactions of 3AQS* with [BPy][BF4] and H2O are a pair of competitive reactions. We also concluded that the entire reaction processes slow down in the case of high [BPy][BF4] concentrations.  相似文献   

20.
The wavelength dependence of the quantum yield of O(1D) formation from ozone was determined in the region between 295 and 320 nm by use of a narrow bandwidth laser (Δλ = 0.1 nm). The NO2* chemiluminescence in a mixture of O3 and N2O was used to monitor the O(1 D) formed in the photolysis. The results are related to unit quantum yield at 305 nm. The yield at 313 nm is found to be 0.193 ± 0.008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号