首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
通过分子模拟研究模板分子与功能单体的相互作用,可以缩短优化时间,为选取合适的功能单体以及模板分子/功能单体比例提供依据.本研究以山奈酚为模板分子,通过分子模拟优化实验条件,确定以甲基丙烯酸(MAA)为最优的功能单体,山奈酚/MAA最佳比例为1∶4 (w/w).此外,以二苄基三硫代碳酸酯(DBTTC)为可逆加成-链断裂转移剂,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,实现了仅需优化引发剂和可逆加成-断裂链转移聚合(RAFT)试剂即可制得性能优异的山奈酚分子印迹整体柱.此整体柱对山奈酚和相似物槲皮素的分离度为1.52,相对标准偏差为1.8%.实验结果表明,分子模拟计算简化了实验步骤,以DBTTC为RAFT试剂得到了具有更好形态和结构的分子印迹整体柱.  相似文献   

2.
应用约束刻蚀剂层技术(CELT)对GaAs进行电化学微加工. 研究了刻蚀溶液体系中各组成的浓度比例、GaAs类型、掺杂以及阳极腐蚀过程对GaAs刻蚀加工过程的影响. 循环伏安实验表明, Br-可以通过电化学反应生成Br2作为刻蚀剂, L-胱氨酸可作为有效的捕捉剂. CELT中刻蚀剂层被紧紧束缚于模板表面, 模板和工件之间的距离小于刻蚀剂层的厚度时, 刻蚀剂可以对GaAs进行加工. 利用表面具有微凸半球阵列的导电模板, 可以在不同类型GaAs上加工得到微孔阵列. 实验结果表明: 在相同刻蚀条件下, GaAs的加工分辨率与刻蚀体系中各组分的浓度比例有关, 刻蚀结构的尺寸随着刻蚀剂与捕捉剂浓度比的增加而增大; 在加工过程中, p-GaAs相对于n-GaAs和无掺杂GaAs受到阳极氧化过程的影响较为显著, p-GaAs表面易生成氧化物层, 影响电化学微加工过程. X射线光电子能谱(XPS)和极化曲线实验也证明了这一点.  相似文献   

3.
解丽丽  李庆华  袁昊  王利军  田震  邴乃慈 《化学学报》2008,66(19):2113-2116
紫外/臭氧法用于脱除有序介孔材料SBA-15中有机模板剂. 该方法是一种非加热光化学降解法, 简单、易操作, 可在温和条件下彻底除去SBA-15中三嵌段共聚物有机模板剂P123. 通过XRD, TEM, FT-IR和BET等对SBA-15经不同方法脱除模板剂前后的详细表征, 表明紫外/臭氧法在彻底脱除SBA-15中有机模板剂后, 保留了很好的骨架有序性, 比表面积更大, 孔道更加开放, 克服了高温焙烧脱除模板剂造成的孔道收缩.  相似文献   

4.
张海燕  杨承广  孟祥举  肖丰收 《化学学报》2012,70(23):2387-2392
沸石分子筛晶体材料(例如Beta, ZSM-34)由于具有独特的物理及化学性质, 被广泛应用于催化、吸附与分离、离子交换等领域. 一般来说, 大多数分子筛晶体材料需要在有机模板剂存在的条件下合成. 然而, 有机模板剂的使用会带来很多问题, 例如, 提高分子筛晶体材料的合成成本、在高温煅烧去除模板剂的过程中, 消耗大量的能量以及带来环境污染. 因此, 开发无有机模板剂合成沸石分子筛新路线具有十分重要的研究意义和实用价值. 近年来, 我们研究小组首先开发了无有机模板条件下晶种导向合成分子筛的新方法, 相继合成出了Beta, ZSM-34, FER和LEV等微孔分子筛晶体材料. 将对这几种沸石的合成进行简要的评论.  相似文献   

5.
无有机模板剂条件下合成沸石催化材料   总被引:4,自引:0,他引:4  
工业上广泛应用的某些沸石催化材料,如ZSM-5和β沸石,通常是在有机模板剂存在条件下合成的,但合成过程常常会造成环境污染以及CO2和氮氧化物的排放.如果能在无有机模板剂条件下合成这些材料,则不仅在基础研究上具有重要意义,而且在工业应用方面也具有经济和环保价值.本文对最近有关无有机模板剂合成沸石材料的一些突破性进展进行了综述,并重点讨论了调节起始凝胶配比、使用导向剂溶液以及使用晶种导向合成等路线.  相似文献   

6.
考察了功能单体与模板蛋白的反应摩尔比、溶液pH值及离子强度对功能单体与模板蛋白之间相互作用的影响, 得出制备分子印迹聚合物的最佳条件. 在最佳条件下, 以溶菌酶(Lyz)为模板分子, 丙烯酰胺(AA)和N,N’-亚甲基双丙烯酰胺(BisAA)为聚合基质, 二氧化硅为固体制孔剂, 制备了复合分子印迹聚丙烯酰胺凝胶, 并用平衡吸附实验研究了其吸附性能和识别选择性. 研究结果表明, 该聚合物对模板蛋白有较高的亲和性、选择性和吸附容量,可以从蛋白质混合溶液中分离富集模板分子.  相似文献   

7.
以阿司匹林铜配合物为目标分子,4-乙烯基吡啶为功能单体,乙二醇二甲基丙烯酸酯为交联剂,偶氮二异丁腈为引发剂制备了阿司匹林铜配合物印迹聚合物.采用EDTA洗脱铜离子,再用索氏提取洗脱阿司匹林后得到两种印迹模板,并用铜试剂分光光度法研究了两种分子印迹模板对铜离子的吸附时间、吸附等温线和Scatchard方程曲线的影响.结果表明,未洗脱阿司匹林的印迹模板比洗脱阿司匹林的印迹模板的吸附性能较佳,但差异不够显著.  相似文献   

8.
β沸石骨架稳定性与表面酸性的红外光谱研究   总被引:4,自引:0,他引:4  
用红外光谱法研究了真空热脱附和空气中焙烧两种不同的方法脱除模板剂对Hβ沸石骨架结构稳定性和表面酸性的影响.结果表明,在真空条件下加热脱除模板剂,其骨架结构保持完好且质子酸中心最多.而在空气中焙烧脱除模板剂,导致沸石骨架部分脱铝,形成大量的Lewis酸且耐酸性极差.  相似文献   

9.
以聚阴离子多肽(聚谷氨酸钠)控制合成了微孔二氧化硅空心球. 在合成过程中, 以3-氨丙基三甲氧基硅烷(APMS)和正硅酸乙酯(TEOS)为硅源, 聚谷氨酸钠为模板. 硅源与阴离子多肽模板之间的组装依照以阴离子表面活性剂为模板剂组装合成介孔二氧化硅的机理, 即S-N+-I-机理, 其中S表示阴离子多肽, I表示TEOS, N表示共结构导向剂APMS. 组装过程中质子化的APMS与阴离子多肽之间形成静电相互作用, 同时, AMPS和TEOS共同水解聚合形成围绕阴离子多肽模板的二氧化硅骨架, 多肽的二级结构为微孔孔道的模板. 以阴离子多肽为模板可以在不同的实验条件下控制微孔纳米空心球, 微孔亚微米空心球和实心球形貌的合成. 在生物矿化过程中, 阴离子多肽往往控制碳酸钙或磷酸钙的沉积, 而我们的实验结果表明, 在适当的硅源存在下, 阴离子多肽也可以诱导二氧化硅的沉积.  相似文献   

10.
通过可逆加成-断链链转移(RAFT)溶液聚合,以三硫代碳酸酯为RAFT试剂,偶氮二异丁腈(AIBN)为引发剂,1,4-二氧六环为溶剂,制备甲基丙烯酸(2,2,2-三氟)乙酯(TFEMA)和苯乙烯(St)共聚物.详细研究了不同引发剂的用量、RAFT试剂与引发剂摩尔比以及聚合温度等实验条件对聚合反应过程的影响.通过GPC、FTIR测试共聚物的分子量、分子量分布和分子结构,并用静态接触角仪和AFM分别表征聚合物膜的接触角、表面能及膜的表面形貌.  相似文献   

11.
Mesoporous high surface area MCM-41 and SBA-15 type silica materials with fibrous morphology were synthesized and used as support materials for the ALCVD (atomic layer chemical vapor deposition) preparation of Co/MCM-41 and Co/SBA-15 catalysts. Co/MCM-41 and Co/SBA-15 catalysts were prepared by deposition of Co2(CO)8 from the gas phase onto the surfaces of preheated support materials in a fluidized bed reactor. For both silica materials, two different kinds of preparation methods, direct deposition and a pulse deposition method, were used. Pure silica supports as well as supported cobalt catalysts were characterized by various spectroscopic (IR) and analytical (X-ray diffraction, Brunauer-Emmett-Teller, elemental analysis) methods. MCM-41 and SBA-15 fibers showed considerable ability to adsorb Co2(CO)8 from the gas phase. For MCM-41 and SBA-15 silicas, cobalt loadings of 13.7 and 12.1 wt % were obtained using the direct deposition method. The cobalt loadings increased to 23.0 and 20.7 wt % for MCM-41 and SBA-15 silicas, respectively, when the pulse deposition method was used. The reduction behavior of silica-supported cobalt catalysts was found to depend on the catalyst preparation method and on the mesoporous structure of the support material. Almost identical reduction properties of SBA-15-supported catalysts prepared by different deposition methods are explained by the structural properties of the mesoporous support and, in particular, by the chemical structure of the inner surfaces and walls of the mesopores. Pulse O2/H2 chemisorption experiments showed catalytically promising redox properties and surface stability of the prepared MCM-41- and SBA-15-supported cobalt catalysts.  相似文献   

12.
萘在介孔分子筛MCM-41与SBA-15上的吸附特性研究   总被引:1,自引:0,他引:1  
对低浓度气相萘在两种常见介孔分子筛MCM-41和SBA-15上的吸附特性进行研究。得到了萘在两种吸附剂上的吸附等温线和不同初始浓度下的穿透曲线,并分别与吸附等温线模型(Langmuir、Freundlich、D-R)和恒定浓度波动力学模型进行了拟合。结果表明, Langmuir模型能很好描述低浓度气相萘的吸附等温线(R2均在99%以上);具有微孔结构的SBA-15对萘的吸附能力要优于仅具备介孔结构的MCM-41。动力学模型在初始浓度较低时能较好地预测萘在吸附剂上的穿透曲线,且在SBA-15上的相关系数高于MCM-41;萘在2.76 mol/L时具有较大介孔的SBA-15的总传质系数Ka更高,表明萘在SBA-15上的总传质阻力更低,更能较快达到传质平衡。  相似文献   

13.
It is shown that intrinsically stiff chain aggregates of a metallosupramolecular coordination polyelectrolyte (MEPE) can form in the cylindrical nanopores of MCM-41 and SBA-15 silica by self-assembly of its constituents (metal ions and organic ligand). The UV/vis spectra of the resulting MEPE-silica composites exhibit the characteristic metal-to-ligand charge transfer band of the MEPE complex in solution. For the MEPE-silica composite in SBA-15 an iron content of 1.2 wt % was found, corresponding to ca. 10 MEPE chains disposed side by side in the 8 nm wide pores of the SBA-15 matrix. In the case of MCM-41 (pore width < 3 nm), where only one MEPE chain per pore can be accommodated, an iron content of 0.3 wt % was obtained, corresponding to half-filling of the pores. It was also found that MEPE chains spontaneously enter the pores of SBA-15, when a solution of MEPE is exposed to the silica matrix.  相似文献   

14.
不同结构颗粒对PMMA基复合材料性能影响   总被引:1,自引:0,他引:1  
采用原位本体聚合法制备PMMA/MCM-41(with template),PMMA/SBA-15(with template),PMMA/SiO2三种复合材料.研究了介孔分子筛MCM-41,SBA-15和SiO2对PMMA复合材料拉伸强度,冲击强度,热稳定性的影响.由于合成介孔分子筛MCM-41,SBA-15时所用的模板剂CTAB和P123分布于孔口处和颗粒表面上,分别与PMMA基体产生物理缠结作用,增加了两者的相容性;且P123(EO20PO70EO20)表面有较大的PO/EO比率,与小分子量的CTAB相比有较强的疏水性,使得PMMA/SBA-15(with template)复合材料的性能要优于PMMA/MCM-41(with template).  相似文献   

15.
Under atmospheric pressure, nano-polyethylene fibres were prepared via in situ ethylene extrusion polymerization, with MCM-41 and SBA-15 supported zirconocene dichloride (Cp2ZrCl2) catalytic systems, respectively. The effects of the geometrical structures and surface properties of MCM-41 and SBA-15 on the morphology of the resultant polyethylene, catalytic activity and polymerization rate were investigated and compared in various polymerization conditions. The possible formation mechanism of nano-polyethylene fibres with MCM-41 and SBA-15 supported Cp2ZrCl2 as catalyst was discussed.  相似文献   

16.
New luminescent inorganic–organic hybrid materials incorporating the luminescent zinc(II) complex ZnL2 (λem = 457 nm and Φem = 4.4% reference values for ZnL2; HL = chelating ligand resulting from the reaction between salicylaldehyde and 3-aminopropyltriethoxysilane), covalently bonded to different types of mesoporous silica hosts (namely MCM-41, MCM-48 and SBA-15), were prepared via both the methods of grafting post-synthesis (GPS) and one-pot synthesis (OPS). The products obtained, which form the GPS [(GPS)(Zn/MCM-41), (GPS)(Zn/MCM-48), (GPS)(Zn/SBA-15)] and the OPS [(OPS)(Zn/MCM-41), (OPS)(Zn/MCM-48), (OPS)(Zn/SBA-15)] series, contain the ZnL2 guest covalently bonded to the silica framework through silicon–oxygen bonds formed when the silane group is placed at the periphery of the Zn(II) coordination sphere. GPS and OPS materials were characterized by powder X-ray diffraction, N2 adsorption/desorption, thermogravimetric analysis (TGA) and UV/vis spectroscopy. For the new mesoporous materials the emission quantum yield (EQY) was measured by means of an integrating sphere combined with a spectrofluorimeter. The ZnL2 loading (measured by the ZnL2/SiO2 ratio calculated from TGA data) for MCM-41 appears to be independent of the synthesis procedure, whereas, for both MCM-48 and SBA-15, the ZnL2/SiO2 ratio of the materials obtained via OPS is about four times higher than products obtained from GPS. The ZnL2 loaded GPS and OPS series show λem maxima at about 485 and 455 nm, respectively. Moreover, with reference to EQY (GPS)(Zn/SBA-15) and (OPS)(Zn/SBA-15), although featuring ZnL2/SiO2 ratios of 0.13 and 0.45, respectively, they showed similar EQY values: 2% and 5%. On the contrary, (GPS)(Zn/MCM-41) and (OPS)(Zn/MCM-41) which give similar ZnL2/SiO2 ratios (0.09 and 0.14) exhibit very different EQY, i.e. 2% and 22%, respectively.  相似文献   

17.
Water sorption calorimetry has been used for characterization of 2D hexagonally ordered mesoporous silica SBA-15. Experimental data on water sorption isotherm, the enthalpy, and the entropy of hydration of SBA-15 are presented. The results were compared with previously published results on MCM-41 obtained using the same technique. The water sorption isotherm of SBA-15 consists of four regimes, while the sorption isotherm of MCM-41 consists only of three. The extra regime in the water sorption isotherm for SBA-15 arises from filling of intrawall pores, that are present in SBA-15 but absent in MCM-41. The water sorption isotherms of the two types of mesoporous silica were analyzed using the Barrett-Joyner-Halenda approach. For the BJH analysis, t-curves of silica with different degrees of hydroxylation were proposed. Comparison of water and nitrogen t-curves shows that, independent of hydroxylation of silica surface, the adsorbed film of water is much thinner than the adsorbed film of nitrogen at similar relative pressures. This fact decreases the uncertainty of the assessment of porosity with water sorption originated from variations in surface properties. The pore size distribution of SBA-15 calculated with BJH treatment of water sorption data is in good agreement with nitrogen NLDFT results on the same material.  相似文献   

18.
The adsorption of water in two mesoporous silica materials with cylindrical pores of uniform diameter, MCM-41 and SBA-15, was studied by 1H MAS (MAS=magic angle spinning) and static solid-state NMR spectroscopy. All observed hydrogen atoms are either surface -SiOH groups or hydrogen-bonded water molecules. Unlike MCM-41, some strongly bound water molecules exist at the inner surfaces of SBA-15 that are assigned to surface defects. At higher filling levels, a further difference between MCM-41 and SBA-15 is observed. Water molecules in MCM-41 exhibit a bimodal line distribution of chemical shifts, with one peak at the position of inner-bulk water, and the second peak at the position of water molecules in fast exchange with surface -SiOH groups. In SBA-15, a single line is observed that shifts continuously as the pore filling is increased. This result is attributed to a different pore-filling mechanism for the two silica materials. In MCM-41, due to its small pore diameter (3.3 nm), pore filling by pore condensation (axial-pore-filling mode) occurs at a low relative pressure, corresponding roughly to a single adsorbed monolayer. For SBA-15, owing to its larger pore diameter (8 nm), a gradual increase in the thickness of the adsorbed layer (radial-pore-filling mode) prevails until pore condensation takes place at a higher level of pore filling.  相似文献   

19.
This paper reports a molecular simulation and experimental study on the adsorption and condensation of simple fluids in mesoporous micelle-templated silicas MCM-41, MCM-48, and SBA-15. MCM-41 is described as a regular cylindrical silica nanopore, while SBA-15 is assumed to be made up of cylindrical nanopores that are connected through lateral channels. The 3D-connected topology of MCM-48 is described using a gyroid periodic minimal surface. Argon adsorption at 77 K is calculated for the three materials using Grand Canonical Monte Carlo simulations. Qualitative comparison with experiments for nitrogen adsorption in mesoporous micelle-templated silicas is made. The adsorption isotherm for SBA-15 resembles that for MCM-41. In particular, capillary condensation and evaporation are not affected by the presence of the connecting lateral channels. In contrast, the argon adsorption isotherm for MCM-48 departs from that for MCM-41 having the same pore size. While condensation in MCM-41 is a one-step process, filling of MCM-48 involves two successive jumps in the adsorbed amounts which correspond to condensation in different domains of the porosity. The condensation pressure for MCM-48 is larger than that for MCM-41. We attribute this result to the morphology of the MCM-48 surface (made up of both concave and convex regions) that differs from that for MCM-41 (concave only). Our results suggest that the pore connectivity affects pore filling when the size of the connections is comparable to that of the nanopores.  相似文献   

20.
The main objective of this study is to develop readily accessible and recyclable solid catalysts for enantioselective reactions. To achieve this, magnetic MCM-41 and non-magnetic SBA-15 mesoporous supports were prepared, then mesoporous silica supported chiral urea-amine bifunctional catalysts were synthesized by grafting of chiral urea-amine ligand onto SBA-15 and magnetic MCM-41. The magnetic and non-magnetic supports and so-prepared solid catalysts were characterized by using different methods such as N2 sorption measurements, Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope-energy dispersive X-ray analysis (FESEM-EDX), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Results showed that (1R, 2R) or (1S, 2S)-1,2-diphenylethane-1,2-diamine was successively immobilized onto magnetic MCM-41 and SBA-15 pores. The heterogeneous chiral solid catalysts and their homogenous counterparts exhibited high activities both enantioselective transfer hydrogenation reaction (up to 99% conversion and 65% ee) and enantioselective Michael reaction (up to 98% conversion and 26% ee). Moreover, the SBA-15 supported solid catalysts were separated from the reaction mixture by simple filtration, whereas the magnetic MCM-41 supported solid catalysts were separated by simple magnetic decantation and reused in three consecutive catalytic experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号