首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用高压密闭酸溶溶解锑矿石,用电感耦合等离子体原子发射光谱法(ICP-AES)测定锑矿石中As、Sb、Al、Fe、Ca、Mg、K、Na、Ti、Mn等10种元素的含量。在装有0.10 g样品的消解内罐中依次加入体积比为3∶1的盐酸-硝酸混合溶液1 mL和氢氟酸2 mL,在150℃烘箱中保温24 h。取出内罐,在电热板上以150℃蒸发至近干。加入体积比为3∶1的盐酸-硝酸混合溶液0.5 mL再次蒸发至干,此步骤重复一次。加入体积比为1∶3∶4的硝酸-盐酸-水混合溶液5 mL,在烘箱中130℃加热3 h。用体积比为1∶3∶36的硝酸-盐酸-水混合溶液定容至100 mL,按照优化的ICP-AES仪器工作条件测定。结果显示:10种元素的质量浓度均在一定范围内与其对应光谱响应值呈线性关系,检出限(3s)为1.98~77.20μg·g~(-1);按照试验方法分析4种标准物质,所得相对误差为-2.8%~10%;对2种标准物质平行测定12次,测定值的相对标准偏差(RSD)为0.25%~6.6%。  相似文献   

2.
利用硝酸、盐酸、氢氟酸混合液和微波消解仪密闭消解样品,建立了一种微波消解-电感耦合等离子体质谱(ICP-MS)法同时测定土壤中铜、铅、锌、锰、钒、铬、镉、镍、锡、铊10种重金属的分析方法。取0.100 0 g土壤样品于消解罐中,采用4 mL硝酸+1 mL盐酸+1 mL氢氟酸消解体系按照设定程序进行微波消解,冷却,定容后利用电感耦合等离子体质谱法进行。结果表明,以铑元素作为内标,10种重金属元素在一定的质量浓度范围内与其信号强度呈线性关系,线性相关系数均不小于0.999 8,检出限为0.010~0.92 mg/kg。对3种标准物质进行测定,测定值的相对标准偏差为2.89%~7.72%(n=10),相对偏差为-5.95%~4.11%。该方法分析流程简单,工作效率高,检出限低,适合大批量土壤样品的多元素同时分析。  相似文献   

3.
提出用增压消解法消解硅藻土样品可使其所含的铌、钽、锆、铪等高场强元素溶解,从而达到所测定的26种微量元素完全溶解。操作时取样0.10g,置于消解罐的聚四氟乙烯(PTFE)内罐中,加少量水湿润样品,然后加入硝酸2 mL和氢氟酸5 mL,将消解罐密闭盖紧,置于保温185℃的烘箱中消解24h后,冷却,取出内罐,加入硝酸1mL,在电热板上蒸发至近干,重复3次加入硝酸并蒸干,以驱尽氢氟酸。然后于残渣中加入HCl-HNO_3-H_2O(体积比为3∶1∶4)混合酸5mL,将此内罐回置于外罐中,加盖密闭,再置于控温在185℃烘箱中消解8h,冷却后取出内罐,将其中溶液定容至25.0mL。分取此溶液5.0mL,加水定容至25mL。此溶液作为试溶在选定的仪器工作条件下进行电感耦合等离子体质谱分析。测得各元素的质量浓度在一定范围内与所测得的响应值与内标响应值的比值呈线性关系。各元素的检出限(3s)为0.003~0.2μg·g~(-1)。在制作标准曲线及样品分析时,均在最终的测试溶液中加入~(103)Rh(10μg·L~(-1))作为内标。用本方法分析了国家标准物质,所得测定值与其认定值相符。各测定值的相对标准偏差(n=8)为1.3%~5.6%。对我国3个主要矿区的硅藻土样品进行分析,并绘制了球粒陨石归一化的稀土配分曲线图,发现3种样品都表现为轻稀土含量高于重稀土,都具有比较平滑的配分曲线,但存在铕的负异常。这些规律与文献的报道一致。  相似文献   

4.
建立了微波消解-电感耦合等离子体质谱法(ICP-MS)同时测定铝土矿中锂、铬、铜、铁、钛、钾、钠、钙、镁、铅、锌等11种金属元素含量的方法。将铝土矿粉碎、研磨和干燥后,取0.1 g样品,加入3 mL硫酸、1 mL硝酸、2 mL氢氟酸和3 mL盐酸,按升温程序微波消解样品,加40 g·L~(-1)硼酸溶液10 mL,继续在120℃下消解10 min,使消解液变澄清。冷却后取出,180℃加热至近干,用1%(体积分数)硝酸溶液稀释,按照ICP-MS条件测定。通过用10 g·L~(-1)铝基体溶液配制混合标准溶液系列并加入内标元素Sc、Ge、Bi的方法来消除基体干扰,选择合适的待测元素同位素的方法来消除谱线重叠干扰。结果显示:11种元素的质量浓度均在一定范围内与其对应的响应值与内标元素响应值的比值呈线性关系,检出限(3s)为0.011~1.400 mg·kg~(-1)。对实际样品进行加标回收试验,测定值为0.13~72.21 mg·L~(-1),测定值的相对标准偏差(n=6)为0.69%~2.6%,回收率为94.0%~106%;此方法用于分析3种铝土矿成分分析标准物质GBW 07177、GBW 07179、GBW 07180,所得测定值均在认定值要求的范围内。  相似文献   

5.
提出了微波消解-电感耦合等离子体质谱法(ICP-MS)同时测定有机肥料中As、Cd、Co、Cr、Ni、Pb、Sb、Tl、V等9种有毒有害元素含量的方法。取0.10 g有机肥料样品于聚四氟乙烯微波消解罐中,以2.5 mL盐酸、7.5 mL硝酸和2.0 mL氢氟酸为混合酸进行微波消解。消解结束后,于140℃赶酸,然后加入1.0 mL 50%(体积分数)硝酸溶液,再用水定容至50 mL,摇匀,过滤,取滤液待测,在线加入混合内标溶液。结果表明:9种元素标准曲线的线性范围均为2~100μg·L-1,方法检出限(3s)为0.59~66.75μg·kg-1;按照标准加入法对典型有机肥料样品进行回收试验,9种元素测定值的相对标准偏差(n=7)为2.0%~3.5%,回收率为81.5%~112%。  相似文献   

6.
建立了微波消解-电感耦合等离子体质谱法(ICP-MS)测定深海沉积物中稀土总量的方法。将深海沉积物湿样烘干、压碎,剔除杂质,过筛后再次烘干。称取0.20 g样品于微波消解罐中,加入5.0 mL硝酸和2.0 mL氢氟酸,在程序升温条件下进行微波消解,结束后加入3.0 mL高氯酸进行赶酸,再加入50%(体积分数)硝酸溶液加热溶解样品中的盐类。冷却后,用水定容至50 mL。分取5.0 mL,用2%(体积分数)硝酸溶液定容至50 mL,在线加入10μg·L~(-1)铟内标溶液,按照优化的ICP-MS工作条件测定稀土氧化物含量。结果显示:15种稀土氧化物的质量浓度在一定范围内和其与内标元素铟响应值的比值呈线性关系,相关系数均为0.999 9,检出限(3s)为0.006 2~0.060 0μg·g~(-1)。对3种深海沉积物样品进行精密度、加标回收及方法比对试验,结果显示:所得测定值的相对标准偏差(n=11)为1.1%~2.9%,回收率为96.0%~104%,方法和国家标准方法GB/T 17417.1-2010所得的测定值基本一致。  相似文献   

7.
土壤中总铬测定样品预处理方法的探讨   总被引:5,自引:0,他引:5  
用GB/T 17137—1997中规定的两种方法即硝酸—氢氟酸—高氯酸—盐酸和硫酸—硝酸—氢氟酸—盐酸法对土壤样品进行消解;再用火焰原子吸收分光光度法测定其中铬的含量,两种样品消解方法测定结果之间存在显著性差异,后一种样品消解方法测定结果明显偏低。  相似文献   

8.
目前海洋沉积物前处理主要通过电热板消解,但该方法存在消解不完全、前处理时间长、重复性较差以及手工消解操作繁琐等问题。为提高海洋沉积物重金属消解效率,通过考察硝酸、盐酸、氢氟酸和高氯酸组合酸体系比例和最高消解温度对海洋沉积物预处理的影响,确定了最优的消解条件,建立了全自动消解-电感耦合等离子体质谱仪测定海洋沉积物中重金属的方法。结果显示硝酸占比越高各元素消解效果越好,盐酸用量不宜过多,逆王水消解比例最好。最优预处理条件为9 mL硝酸、3 mL盐酸、4 mL氢氟酸和2 mL高氯酸于160℃高温消解。该预处理条件下各元素相关性系数均大于0.999,经海洋沉积物标准样品(GBW07314)和实际样品应用,与国标法(GB/T 20260-2006)相比优化条件下各元素精密度和正确度均显著提高、检出限更低。各元素的相对标准偏差分别为0.9%~3.3%、0.5%~3.4%,回收率均在84.2%~102%。该方法自动化程度高、操作简便,可实现大批量样品预处理,适用于海洋沉积物中重金属元素的测定。  相似文献   

9.
测定土壤中铍、锌、钼、铊、钛、锑等6种元素以硝酸-氢氟酸-高氯酸混合酸为消解体系,采用全自动消解法进行消解;测定土壤中钒、锰、钴、镍、铜、镉、钡、铅、铬等9种元素以硝酸-氢氟酸-盐酸混合酸为消解体系,采用微波消解法进行消解。以氩为内标元素校正土壤基体的雾化效率及电离效率。电感耦合等离子体原子发射光谱法(ICP-AES)采用多向观测模式,结合多重谱线拟合技术(MSF)校正光谱干扰,测定环境土壤中上述15种元素的含量,检出限为0.1~3.7 mg·kg~(-1)。按上述方法测定标准样品GSS~(-1)0和GSS~(-1)3,各元素的测定值与认定值吻合,相对标准偏差(n=11)为0.15%~2.6%。以吉林市某河岸土壤为实际测定样品,各元素的测定值与电感耦合等离子体质谱法(ICP-MS)的测定值一致,相对标准偏差(n=11)为1.6%~4.5%。  相似文献   

10.
采用高温高压密闭溶样前处理技术,结合电感耦合等离子体质谱法同时测定土壤中多种有毒元素含量。试样用2 mL逆王水(盐酸与硝酸的体积比为1∶3)为消解剂,在密闭罐中于160℃下消解6 h后,采用电感耦合等离子体质谱法同时测定铜、铬、镉、砷、汞和铅6种有毒元素。铜、铬、镉、砷、汞和铅6种元素的质量浓度在0~20μg/L范围内与信号强度呈良好的线性关系,线性相关系数r均大于0.99,检出限为0.01~0.11μg/L,测定结果的相对标准偏差为1.3%~5.6%(n=5),加标回收率为91.2%~104.6%。该方法样品处理简单,节能环保,可用于土壤、水系沉积物等样品中6种有毒元素的同时测定。  相似文献   

11.
鉴于目前常用的海洋沉积物中重金属测定的消解方法存在工作效率低、操作复杂、交叉污染、人员危险性高等问题,通过比对和参考现行规范、标准和文献资料中海洋沉积物重金属的不同消解方法,提出了全自动石墨消解海洋沉积物的方法,并以原子荧光光谱法测定汞和砷的含量,以电感耦合等离子体质谱法测定铜、铅、锌、镉、铬的含量。以6 mL盐酸、2 mL硝酸和8 mL水为消解酸,于100℃消解0.2 g样品1.5 h;消解结束后,冷却至室温,用水定容至50 mL,按照原子荧光光度计的工作条件测定汞和砷的含量。以5 mL盐酸、5mL硝酸为消解酸,先于120℃消解0.2 g样品1 h;然后加入2 mL硝酸、5 mL氢氟酸和2 mL高氯酸,于180℃继续消解4 h;消解结束后,冷却至室温,用水定容至50 mL,按照电感耦合等离子体质谱仪的工作条件测定铜、铅、锌、镉、铬的含量。结果表明:汞、砷标准曲线的线性范围分别在1.00μg·L-1以内和10.0μg·L-1以内,铜、铅、锌、镉、铬标准曲线的线性范围在100μg·L-1以内,汞、砷、铜、铅、锌、镉、铬的检...  相似文献   

12.
采用微波消解样品-电感耦合等离子体原子发射光谱法同时测定铅精矿中主体元素铅及有毒有害元素砷、镉、汞的含量。0.20g试样置于消解罐中,先后加入硝酸9mL、盐酸3mL、氟硼酸2mL及过氧化氢2.5mL,密闭罐盖按设定的微波消解程序进行消解。试验选择铅、砷、镉和汞的分析线分别为220.351,189.042,228.802,184.950nm以消除基体干扰。铅、砷、镉、汞的检出限分别为16.0,2.2,0.4,0.8μg.g-1。方法用于铅精矿标准样品(GBW 07617)和铅精矿实际样品分析,此方法的测定值与认定值及原子吸收光谱法或原子荧光光谱法的测定值相一致。方法的相对标准偏差(n=10)在0.15%~3.9%之间。  相似文献   

13.
建立微波消解样品、电感耦合等离子体质谱(ICP-MS)法同时检测外科植入物用超高分子量聚乙烯(UHMWPE)中铝、钙、钛3种杂质元素的分析方法。取0.50 g样品,加入5 mL硝酸和1 mL过氧化氢,于180℃微波消解15 min,以钪(45Sc)为内标,用ICP-MS法同时测定外科植入物用UHMWPE中杂质元素铝、钙、钛的含量。该方法对铝、钙、钛元素的测定具有良好的线性关系,相关系数均不小于0.999 6,检出限为0.10~0.14 mg/kg,样品测定结果的相对标准偏差为1.2%~3.6%(n=7),样品加标回收率为97.3%~101.3%。该方法适用于测定UHMWPE中杂质元素含量。  相似文献   

14.
为探究不同混合酸对电感耦合等离子体原子发射光谱法测定土壤中重金属元素(铜、锌、铅、镍和铬)的影响,对土壤进行多晶衍射分析,采用硝酸-高氯酸、盐酸-硝酸、盐酸-硝酸-氢氟酸-高氯酸、盐酸-硝酸-氢氟酸混合酸对4种不同类型土壤(黑钙土、褐土、棕壤、红壤)进行了分析。结果表明:该4种混合酸对标准样品的测定都具有较高的准确性与精确性;不同的混合酸的对不同类型土壤中重金属元素的测定具有一定的影响,其中对铬的影响最大;完全消解体系(盐酸-硝酸-氢氟酸-高氯酸、盐酸-硝酸-氢氟酸混合酸)的测定结果不同程度地高于不完全消解体系(硝酸-高氯酸、盐酸-硝酸混合酸)的结果。所以对于土壤重金属元素的测定,混合酸需要针对土壤类型,重金属元素种类等因素进行选择。  相似文献   

15.
建立聚乙烯离心管石墨消解-电感耦合等离子体光谱仪测定土壤中硼含量的方法。将土壤样品风干,粉碎至粒径不大于150μm,称量0.1 g土壤样品于50 mL离心管中,加入3 mL盐酸-硝酸-氢氟酸混合液(体积比为1∶1∶1)作为消解试剂,在石墨消解炉中于105℃消解45 min,将消解溶液静置至室温,用去离子水定容至50 mL,取上清液,采用电感耦合等离子体光谱法进行测定。硼的质量浓度在0~2.5μg/mL范围内与光谱强度的线性关系良好,线性方程为y=97 952x-326.14,相关系数为0.999 6,方法检出限为1.0 mg/kg。用该方法对国家标准物质进行测定,测定结果的相对标准偏差为0.79%~1.72%(n=12),样品加标回收率为99.1%~100.7%。  相似文献   

16.
基于硝酸-盐酸-氢氟酸消解体系,建立了马弗炉-微波消解-电感耦合离子体质谱(ICP-MS)法同时测定荞麦秸秆中的Cr、Cu、Ag、Mn、Fe、As、Ni、Pb等重金属含量测定方法。在微波消解的过程中,分别考察5种不同组合的混合酸体系及两种消解方法对荞麦秸秆中8种重金属测试结果的影响。实验结果表明,浓硝酸-浓盐酸-氢氟酸(6∶2∶2)混酸体系和马弗炉-微波消解样品前处理优于其他方法。在优化条件下,8种重金属加标回收率为91.2%~102%,相对标准偏差(RSD,n=5)为0.22%~4.7%,检出限为0.18~9.41μg/L。方法操作简便、快速、准确,结果可靠,能同时测定荞麦秸秆中8种重金属元素。  相似文献   

17.
称取0.2g样品于50mL样品管中,以5mL硝酸-盐酸(1∶1)混合溶液为溶剂,采用石墨消解仪对样品进行前处理。以159 Tb作内标元素补偿基体效应,用电感耦合等离子体质谱(ICP-MS)法对铜精矿中的202 Hg进行测定。结果显示,在0~50μg/L的浓度范围内,校准曲线线性相关系数在0.999 9以上,方法检出限0.019μg/L。对铜精矿标准样品的检测结果与标准值相符。铜精矿中汞的浓度在0.94~15.06μg/g时,与直接测汞仪检测结果对比基本一致。  相似文献   

18.
为提高土壤检测的重金属得率,采用了微波消解/电热板组合预处理-电感耦合等离子体质谱法(ICP-MS)测定土壤重金属含量。分析了硝酸(HNO3)、氢氟酸(HF)、高氯酸(HClO4)和盐酸(HCl)组合消解液及赶酸温度对土壤预处理影响。结果显示:在硝酸和盐酸混合消解液中,硝酸占比越高,铬(Cr)、钴(Co)、铜(Cu)、镉(Cd)得率更高;消解液体系中加入氢氟酸可使消解更加彻底,提高铬与铜的得率。最优预处理消解条件为硝酸 6ml+ 氢氟酸 2ml消解液组合进行微波消解,1ml 高氯酸于155℃电热板上赶酸。经土壤标准样品GBW07401(GSS-1)和GBW07452(GSS-23)实际应用,预处理条件优化后测试准确度和稳定性均显著提高。此外使用元素铑(Rh)作为内标物时,其方法稳定性和准确性高于内标物钪(Sc)和锗(Ge)。可为相关国家土壤重金属测定标准的修制订提供方法学参考。  相似文献   

19.
工业纯铁样品用盐酸、硝酸、氢氟酸微波消解,消解液用水定容至100.0mL,采用电感耦合等离子体质谱法测定上述溶液中硼、镁、钙、钛、铬、镍、铜、锆、铌、锡、锑、铅、铋等13种元素的含量。采用内标法定量,13种元素的线性范围均为0.000 10%~0.015 00%,检出限(3s)为0.24~0.66μg·L^-1。用标准加入法做方法的回收试验,测得回收率为84.0%~106%。方法应用于纯铁标准样品(GBW 01401b、GBW 01402g、SRM 2167、YSBC 11247-2007)的分析,测定值与认定值相符,测定值的相对标准偏差(n=6)为0.80%~9.6%。  相似文献   

20.
通过用四酸与微波消解法溶解样品对比,建立了用硝酸、盐酸、氢氟酸、高氯酸分解样品,采用电感耦合等离子体质谱法(ICP-MS)测定稀土矿中16种元素含量。方法采用103Rh作为内标消除干扰,确定了最优测定条件,16种稀土元素检出限为0.0029-0.0099ng/mL,测定范围为0.0005-0.020%。精密度试验、加标回收试验及标准物质检测,结果验证了方法的可行性及准确性。该方法简单易操作,结果可靠,能满足实验分析要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号