首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic properties of Pt nanoparticles deposited on CeO(2)(111) and CeO(x)/TiO(2)(110) model catalysts have been examined using valence photoemission experiments and density functional theory (DFT) calculations. The valence photoemission and DFT results point to a new type of "strong metal-support interaction" that produces large electronic perturbations for small Pt particles in contact with ceria and significantly enhances the ability of the admetal to dissociate the O-H bonds in water. When going from Pt(111) to Pt(8)/CeO(2)(111), the dissociation of water becomes a very exothermic process. The ceria-supported Pt(8) appears as a fluxional system that can change geometry and charge distribution to accommodate adsorbates better. In comparison with other water-gas shift (WGS) catalysts [Cu(111), Pt(111), Cu/CeO(2)(111), and Au/CeO(2)(111)], the Pt/CeO(2)(111) surface has the unique property that the admetal is able to dissociate water in an efficient way. Furthermore, for the codeposition of Pt and CeO(x) nanoparticles on TiO(2)(110), we have found a transfer of O from the ceria to Pt that opens new paths for the WGS process and makes the mixed-metal oxide an extremely active catalyst for the production of hydrogen.  相似文献   

2.
A propitious binary catalyst composed of Pt and Cu which were electrodeposited simultaneously onto a glassy carbon (GC) substrate was recommended for the formic acid (FA) electro-oxidation reaction (FAOR); the principal anodic reaction in the direct FA fuel cells (DFAFCs). The simultaneous co-electrodeposition of Pt and Cu in the catalyst provided an opportunity to tune the geometric functionality of the catalyst to resist the adsorption of poisoning CO at the Pt surface that represented the major impediment for DFAFCs marketing. The catalytic activity of the catalyst toward FAOR was significantly influenced by the (Pt4+/Cu2+) molar ratio of the electrolyte during electrodeposition, which also affected the surface coverage of Pt and Cu in the catalyst. Interestingly, with a molar (Pt4+/Cu2+) ratio of (1:4), the catalyst sustained superior (3.58 compared to 0.65 obtained at the pristine Pt/GC catalyst) activity for FAOR, concurrently with up to four-times (0.73 compared to 0.18 obtained at the pristine Pt/GC catalyst) improvement in the catalytic tolerance against CO poisoning. This associated, surprisingly, a negative shift of ca. 336 mV in the onset potential of FAOR, in an indication for the competitiveness of the catalyst to minimize superfluous polarizations in DFAFCs. Furthermore, it offered a better (ended up with 20% loss in the activity) stability for continuous (1 h) electrolysis than pristine Pt/GC catalyst (the loss reached 35%). The impedance and CO stripping measurements together excluded the electronic element but confirmed the geometrical influence in the catalytic enhancement.  相似文献   

3.
Experiments have revealed that formate synthesis from carbon dioxide and hydrogen is structure insensitive to copper catalyst surfaces, while the reverse formate decomposition reaction is structure sensitive. The present ab initio density functional theory (DFT) calculations show that the reaction of CO2 with surface atomic hydrogen initially leads to the formation of unstable monodentate formate, which has similar adsorption energies on Cu(111), Cu(100), and Cu(110). The structure of the transition state is similar to that of monodentate formate. It is also shown that gaseous CO2 is directly reacted with surface hydrogen, as suggested by previous experiments. The position of the similar transition state and the direct reaction mechanism well explain the similar energetic pathways, that is, the structure insensitivity.  相似文献   

4.
CO在某些过渡金属表面吸附活化的DFT研究   总被引:8,自引:0,他引:8  
采用DFT方法对CO在M(100)(M= Cu、Ag、Au、Pd、Pt)表面上的吸附行为进行了系统的比较性研究.结果表明,CO分子在这些过渡金属单晶表面上发生的是非解离性吸附,吸附后C-O键长都变长了,均不同程度地削弱了C-O键,继而活化了CO分子;从表面结合能、重叠集居数、轨道电子数变化等方面分析了成键强弱顺序,发现CO的吸附强度随Pd(100)、Pt (100)、Cu (100)、Ag(100)、Au(100)顺序依次减弱,并且将CO与过渡金属间的结合能(BE)、过渡金属的d电子转移数分别与水煤气变换反应活性数据进行了关联,在定性上比较好地解释了金属铜的催化活性优于其它金属的原因.  相似文献   

5.
The commercial high‐temperature water‐gas shift (HT‐WGS) catalyst consists of CuO‐Cr2O3‐Fe2O3, where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron‐based model catalysts were investigated with in situ or pseudo in situ characterization, steady‐state WGS reaction, and density function theory (DFT) calculations. For the first time, a strong metal‐support interaction (SMSI) between Cu and FeOx was directly observed. During the WGS reaction, a thin FeOx overlayer migrates onto the metallic Cu particles, creating a hybrid surface structure with Cu‐FeOx interfaces. The synergistic interaction between Cu and FeOx not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H2O dissociation, and WGS reaction. These new fundamental insights can potentially guide the rational design of improved iron‐based HT‐WGS catalysts.  相似文献   

6.
采用微分反应器,研究了新型Re/Pt/Ce0.8Zr0.2O2/蜂窝催化剂上低温水煤气变换反应的动力学行为。利用非线性最小二乘法处理正交设计的实验数据,获得了动力学方程的模型参数。所得的结果符合幂函数型动力学方程,经F检验和相关指数检验,实验值和模拟计算值符合较好。在该催化剂上水煤气变换反应的活化能为70kJ/mol,与文献中报道的数值相吻合。该催化剂上反应速率对CO、H2O、H2和CO2的反应级数分别为0.09、0.88、-0.54和-0.11,与传统的Cu基低变催化剂上的反应级数相差较大。这表明,低温水煤气变换反应在两种催化剂上遵循不同的反应机理。  相似文献   

7.
Density functional theory (DFT) was employed to investigate the behavior of Mo carbides in the water-gas-shift reaction (WGS, CO + H(2)O --> H(2) +CO(2)). The kinetics of the WGS reaction was studied on the surfaces of Mo-terminated Mo(2)C(001) (Mo-Mo(2)C), C-terminated Mo(2)C(001) (C-Mo(2)C), and Cu(111) as a known active catalyst. Our results show that the WGS activity decreases in a sequence: Cu > C-Mo(2)C > Mo-Mo(2)C. The slow kinetics on C-Mo(2)C and Mo-Mo(2)C is due to the fact that the C or Mo sites bond oxygen too strongly to allow the facile removal of this species. In fact, due to the strong O-Mo and O-C interactions, the carbide surfaces are likely to be covered by O produced from the H(2)O dissociation. It is shown that the O-covered Mo-terminated Mo(2)C(001) (O_Mo-Mo(2)C) surface displays the lowest WGS activity of all. With the Mo oxide in the surface, O_Mo-Mo(2)C is too inert to adsorb CO or to dissociate H(2)O. In contrast, the same amount of O on the C-Mo(2)C surface (O_C-Mo(2)C) does not lead to deactivation, but enhances the rate of the WGS reaction and makes this system even more active than Cu. The good behavior of O_C-Mo(2)C is attributed to the formation of a Mo oxycarbide in the surface. The C atoms destabilize O-poisoning by forming CO species, which shift away from the Mo hollow sites when the surface reacts with other adsorbates. In this way, the Mo sites are able to provide a moderate bond to the reaction intermediates. In addition, both C and O atoms are not spectators and directly participate in the WGS reaction.  相似文献   

8.
Pt/CeO2-ZrO2变换催化剂的制备、表征与性能   总被引:7,自引:0,他引:7  
 用共沉淀法制备了不同Ce/Zr比的CeO2-ZrO2复合氧化物,用浸渍法制备了Pt/CeO2-ZrO2水煤气变换催化剂,并对该催化剂进行了活性评价. 结果表明,与传统的Cu基低变催化剂相比,该催化剂具有操作温度范围宽和抗氧化冲击等优点,具有应用于车载重整制氢过程的潜力. 考察了温度、空速和汽/气比等条件对催化剂活性的影响,对催化剂的制备参数和工艺参数进行了研究. 结果表明,不同Ce/Zr比的Pt/CeO2-ZrO2催化剂的活性相差很大,其中Pt/Ce0.8Zr0.2O2变换催化剂活性最高. XRD结果表明,制备的Pt/Ce0.8Zr0.2O2形成了固溶体. 通过增加单位质量催化剂表面的Pt原子数可提高催化剂的活性.  相似文献   

9.
CO poisoning to platinum catalysts has long been recognized as one of the major technical obstacles in heterogeneous catalysis and its successful removal represents a significant challenge to a wide variety of applications. Using density functional theory (DFT), we performed systematic theoretical calcula-tions to explore the CO removal mechanisms, in the presence of hydrogen, via oxidation by oxygen to form CO2 or reduction by hydrogen to form formaldehyde using a subnano Pt cluster as a model for catalyst nanoparticles. We show that CO oxidation is both thermochemically and kinetically difficult at low H coverage but becomes very exothermic with a moderate activation barrier at high H coverage, suggesting that the oxidation can be carried out readily at elevated temperatures. Doping the Pt cluster with Ru can significantly improve the oxidation thermochemical energy and moderately reduce the activation barrier. The results are consistent with experimental observations. We found that CO reduction by hydrogen to form formaldehyde is moderately endothermic. However, the reaction is predicted to be kinetically difficult due to the relatively high activation barriers associated with the sequential H attacks to the CO molecule.  相似文献   

10.
Practical copper (Cu)‐based catalysts for the water–gas shift (WGS) reaction was long believed to expose a large proportion of Cu(110) planes. In this work, as an important first step toward addressing sulfur poisoning of these catalysts, the detailed mechanism for the splitting of hydrogen sulfide (H2S) on the open Cu(110) facet has been investigated in the framework of periodic, self‐consistent density functional theory (DFT‐GGA). The microkinetic model based on the first‐principles calculations has also been developed to quantitatively evaluate the two considered decomposition routes for yielding surface atomic sulfur (S*): (1) H2S → H2S* → SH* → S* and (2) 2H2S → 2H2S* → 2SH* → S* + H2S* → S* + H2S. The first pathway proceeding through unimolecular SH* dissociation was identified to be feasible, whereas the second pathway involving bimolecular SH* disproportionation made no contribution to S* formation. The molecular adsorption of H2S is the slowest elementary step of its full decomposition, being related with the large entropy term of the gas‐phase reactant under realistic reaction conditions. A comparison of thermodynamic and kinetic reactivity between the substrate and the close‐packed Cu(111) surface further shows that a loosely packed facet can promote the S* formation from H2S on Cu, thus revealing that the reaction process is structure sensitive. The present DFT and microkinetic modeling results provide a reasonably complete picture for the chemistry of H2S on the Cu(110) surface, which is a necessary basis for the design of new sulfur‐tolerant WGS catalysts. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The electrocatalytic activity of a spontaneously tin-modified Pt catalyst, fabricated through a simple dip-coating method under open-circuit conditions and characterized using surface analysis methods, was studied in electrooxidation reactions of a preadsorbed CO monolayer and continuous oxidation of methanol, formic acid, and formaldehyde in the potentiodynamic and potentiostatic modes. The catalytic activity of the tin-modified Pt surface is compared with that of a polycrystalline Pt electrode. Spontaneously Sn-modified Pt catalyst shows a superior activity toward adsorbed CO oxidation and thus can be promising for PEFC applications. The methanol oxidation rate is not enhanced on the Sn-modified Pt surface, compared to the Pt electrode. Formic acid oxidation is enhanced in the low potential region on the Sn-modified surface, compared to the Pt electrode. The formaldehyde oxidation rate is dramatically increased by modifying tin species at the most negative potentials, where anodic formaldehyde oxidation is completely suppressed on the pure Pt electrode. The results are discussed in terms of poisoning CO intermediate formation resulting from dehydrogenation of organic molecules on Pt sites, and oxidation of poisoning adsorbed CO species via the surface reaction with OH adsorbed on neighboring Sn sites.  相似文献   

12.
The sluggish hydrogen oxidation reaction (HOR) under alkaline conditions has hindered the commercialization of hydroxide‐exchange membrane hydrogen fuel cells. A low‐cost Ni/NiO/C catalyst with abundant Ni/NiO interfacial sites was developed as a competent HOR electrocatalyst in alkaline media. Ni/NiO/C exhibits an HOR activity one order of magnitude higher than that of its parent Ni/C counterpart. Moreover, Ni/NiO/C also shows better stability and CO tolerance than commercial Pt/C in alkaline media, which renders it a very promising HOR electrocatalyst for hydrogen fuel cell applications. Density functional theory (DFT) calculations were also performed to shed light on the enhanced HOR performance of Ni/NiO/C; the DFT results indicate that both hydrogen and hydroxide achieve optimal binding energies at the Ni/NiO interface, resulting from the balanced electronic and oxophilic effects at the Ni/NiO interface.  相似文献   

13.
Methanol steam reforming, catalyzed by Pd/ZnO (PdZn alloy), is a potential source of hydrogen for on-board fuel cells. CO has been reported to be a minor side product of methanol decomposition that occurs in parallel to methanol steam reforming on PdZn catalysts. However, fuel cells currently used in vehicles are very sensitive to CO poisoning. To contribute to the understanding of pertinent reaction mechanisms, we employed density functional slab model calculations to study the decomposition of formaldehyde, a key intermediate in methanol decomposition and steam reforming reactions, on planar surfaces of Pd, Cu, and PdZn as well as on a stepped surface of PdZn. The calculated activation energies indicate that dehydrogenation of formaldehyde is favorable on Pd(111), but unfavorable on Cu(111) and PdZn(111). On the stepped PdZn(221) surface, the dehydrogenation process was calculated to be more competitive to formaldehyde desorption than on PdZn(111). Thus, we ascribe the experimentally observed small amount of CO, formed during steam reforming of methanol on the Pd/ZnO catalyst, to occur at metallic Pd species of the catalyst or at defect sites of PdZn alloy.  相似文献   

14.
张伟  夏广杰  王阳刚 《催化学报》2022,43(1):167-176
直接甲醇燃料电池(DMFC)可以将甲醇的化学能转化为电能.甲醇在室温下是一种液体,很容易运输和低风险储存.在常用燃料中,甲醇热值较高且价格便宜,其单位价格热值甚至高于汽油.更重要的是,甲醇可以通过二氧化碳催化加氢制得.因此可以将可再生能源转化为氢气,并高效地存储在甲醇分子中.而燃料电池消耗甲醇后,产物只有二氧化碳和无污...  相似文献   

15.
The methanol oxidation reaction(MOR) is the limiting half-reaction in direct methanol fuel cell(DMFC).Although Pt is the most active single-metal electrocatalyst for MOR,it is hampered by high cost and CO poisoning.Constructing a Pt or Ru monolayer on a second metal substrate by means of galvanic replacement of underpotentially deposited(UPD) Cu monolayer has been shown as an efficient catalyst design strategy for the electrocatalysis of MOR because of the presumed 100% utilization of atoms and resistance to CO poisoning.Herein,we prepared one-dimensional surface-alloyed electrocatalyst from predominantly(111) faceted Au nanowires with high aspect ratio as the substrate of under-potential deposition.The electrocatalyst comprises a core of the Au nanowire and a shell of catalytically active Pt coated by Ru.Coverage-dependent electro-catalytic activity and stability is demonstrated on the Pt/Ru submonolayers on Au wires for MOR.Among all these catalysts,Au@Pt_(ML)@Ru_(ML) exhibits the best electrocatalytic activity and poisoning tolerance to CO.This presents a viable method for the rational catalyst design for achieving high noble-metal utilization efficiency and high catalytic performance.  相似文献   

16.
Electrocatalysts for ethanol oxidation reaction(EOR)are generally limited by their poor durability because of the catalyst poisoning induced by the reaction intermediate carbon monoxide(CO).Therefore,the rapid oxidation removal of CO intermediates is crucial to the durability of EOR-based catalysts.Herein,in order to effectively avoiding the catalyst CO poisoning and improve the durability,the graphene-nickel nitride hybrids(AG-Ni3N)were designed for supporting palladium nanoparticles(Pd/AG-Ni3N)and then used for ethanol electrooxidation.The density functional theory(DFT)calculations demonstrated the introduction of AG-Ni3N depresses the CO absorption and simultaneously promotes the adsorption of OH species for CO oxidation removal.The fabricated Pd/AG-Ni3N catalyst distinctively exhibits excellent electroactivity with the mass catalytic activity of 3499.5 m A mg-1 on EOR in alkaline media,which is around 5.24 times higher than Pd/C(commercial catalyst).Notably,the Pd/AG-Ni3N hybrids display excellent stability and durability after chronoamperometric measurements with a total operation time of 150,000 s.  相似文献   

17.
A density functional theory study of the elementary steps that lead to the removal of CO(ads(Pt)) over alloyed and sequentially deposited Pt/Ru bimetallic nanoclusters is presented. The reaction energies and activation barriers for the H2O(ads(Ru)) dissociation and CO(ads(Pt)) + OH(ads(Ru)) reaction are estimated in solid-gas interface and in a microsolvated environment to determine which surface morphology is more tolerant to COads poisoning. On the basis of the energetics, the sequentially deposited Pt/Ru nanocluster is predicted to be a much more promising anode catalyst than the alloy cluster surface in fuel cell applications.  相似文献   

18.
Density functional theory periodic slab calculations were carried out for CO adsorption on a series of Mo modified Pt(111) surfaces to provide an insight into the interaction between CO and doped metal surface, an important issue in CO oxidation as well as in promotion and poisoning effects of catalysis. The modification of adsorption properties with respect to those of adsorption on the pure Mo(110) and Pt(111) is described in terms of changes in the adsorption energies, adsorption sites and vibrational properties occurring upon alloying. We believe that the present DFT calculations can provide important information into optimal alloy composition for CO-tolerance, which is not easily obtained by experimental methods.  相似文献   

19.
Graphdiyne, as a magical support, can anchor zero valence metal atoms, providing us with an opportunity to develop emerging catalysts with the maximized active sites and selectivity. Herein we report high-performance atom catalysts (ACs), Cu0/GDY, by anchoring Cu atoms on graphdiyne (GDY) for hydrogen evolution reaction (HER). The activity and selectivity of this catalyst are obviously superior to that of commercial 20 wt.% Pt/C, and the turnover frequency of 30.52 s−1 is 18 times larger than 20 wt.% Pt/C. Density functional theory (DFT) calculations demonstrate that the strong p-d coupling induced charge compensation leads to the zero valence state of the atomic-scaled transition metal catalyst. Our results show the strong advantages of graphdiyne-anchored metal atom catalysts in the field of electrochemical catalysis and opens up a new direction in the field of electrocatalysis.  相似文献   

20.
Au atoms in contact with TiC(001) undergo significant charge polarization. Strong metal–support interactions make Au/TiC(001) an excellent catalyst for the low‐temperature water–gas shift (WGS), with turnover frequencies orders of magnitude larger than those observed for conventional metal/oxide catalysts. DFT calculations indicate that the WGS reaction follows an associative mechanism with HOCO as a key intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号