首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用单辊快淬法制备了Nd12.3-xDyxFe79.7Zr0.8Nb0.8Cu0.4B6.0(x=0,0.5,1.5,2.5)合金纳米晶单相永磁薄带,研究了合金薄带晶化处理后,成分、组织结构与磁性能之间的关系.X射线衍射分析(XRD)表明,淬态合金主要由非晶相和Nd2Fe14B相组成,完全晶化后由Nd2Fe14B相和少量α-Fe组成.高分辨透射电镜(HRTEM)分析表明,经充分退火后,Nd2Fe14B晶体完整,晶粒间几乎没有边界相.随着Dy含量增加,晶粒尺寸细化,矫顽力大幅提高.x=0.5合金综合磁性能最佳,经过700℃晶化处理10min后,其磁性能为Jr=1.09 T,Hci=1048kA·m-1,(BH)max=169.5 kJ·m-3.  相似文献   

2.
采用铜模吸铸制备了厚度为0.8 mm,成分为Nd9Fe81-x-yTi4C2BxNby(x=11,13,15;y=0,4)的Nd2Fe14B/Fe3B型纳米复合永磁合金块体样品,研究了添加Nb对合金铸态组织及其晶化行为的影响,并测试了其磁性能。结果表明:在合金中添加4%(原子分数)Nb元素,不仅能抑制吸铸样品表面Nd2Fe23B3软磁性相、Nd1.1Fe4B4非磁性相和未知相的形成,导致Nd2Fe14B,Fe3B和α-Fe相的相对量增加,而且促使样品内部在非晶基体上形成了少量的Nd2Fe14B和α-Fe,Fe3B纳米晶。添加了Nb的合金吸铸样品表现出一定的硬磁性,其中Nd9Fe66Ti4C2B15Nb4吸铸样品具有最高的矫顽力(Hci=116.66 k A·m-1);添加4%(原子分数)Nb使得合金在晶化过程中由原来的异相同温一步晶化转变为两步晶化,且初始晶化温度Tx均明显降低,两个放热峰的ΔTpx均增大。  相似文献   

3.
用熔体快淬法制备了高性能纳米双相耦合Nd2Fe14B/α-Fe磁体, 研究了快淬速率和热处理工艺对其磁性能和微结构的影响. 实验结果表明, 控制快淬速率在12 m*s-1时, 可直接得到显微组织均匀、α-Fe相粒子细小且均匀分布的纳米双相耦合Nd2Fe14B/α-Fe磁体. 低温退火处理后可消除由少量非晶相带来的成分不均匀性, 其最高磁性能为iHc=432.2 kA*m-1, Jr=1.08 T, (BH)max=115 kJ*m-3. 快淬速率提高, 非晶相体积分数增加, 在高温晶化热处理时软硬磁相析出不均匀, 个别α-Fe相粒子奇异长大, 尺寸达到100 nm左右, 这不利于软硬磁相间的交换耦合作用, 有损磁性能.  相似文献   

4.
采用铜模吸铸及随后的退火处理制备了厚度为0.8 mm,成分为Nd9Fe83-xTi4C4Bx(x=10~15)的Nd2Fe14B/Fe3B型纳米复相磁体,对其组织演变和磁性能进行了研究。结果表明:在铸态合金中,x=10的合金微观组织主要由Nd2Fe14B,Fe3B,α-Fe和TiC相构成。而x=11~15的合金中除含上述各相外,还出现了Nd2Fe23B3相、未知相和非晶相,且随着B含量的增加,它们在合金中的相对含量有不同程度的增加;退火过程中,随着合金中亚稳相和非晶相的转化,Nd2Fe14B,Fe3B和α-Fe相对含量增加,但不同B含量合金的相结构变化差异明显,导致退火后磁体具有不同的磁性能。其中,x=12的合金在680℃退火5 min后获得了最佳磁性能:Br=0.63 T,iHc=98.12 kA·m-1,(BH)max=22.79 kJ·m-3。  相似文献   

5.
研究了Nd10.5Pr2.5Fe80Nb1B6非晶快淬薄带在943,973和1003 K等温晶化与薄带组织和矫顽力的关系.结果表明,Nd10.5Pr2.5Fe80Nb1B6快淬薄带在943 K等温晶化所需晶化孕育时间为12 min,973 K时为5Inin,而1003 K时不足5lIlin.Ndl 0_5%,‰NbB6在1003K晶化25 min后所得的(Nd,Pr)2Fe14B平均晶粒尺寸为163 nm,添加Nb显著延缓了Nd10.5Pr2.5Fe80Nb1B6快淬薄带晶化后的晶粒尺寸长大.加Nb,Pr能有效提高Nd10.5Pr2.5Fe80Nb1B6的矫顽力.在973 K晶化处理19min时得到平均晶粒尺寸为96 nm的(Nd,Pr)2Fe14B单相组织,其最大矫顽力为1616 kA·m-1.  相似文献   

6.
用XRD,TEM和VSM等方法研究了快淬法制备的Pr2Fe14B/α Fe纳米复合永磁薄带的显微结构与磁性。比较了直接快淬和非晶晶化两种制备工艺对合金薄带显微结构和磁性能的影响。通过对Pr8Dy1Fe74.5Co10Nb0.5B6合金薄带高压退火,获得了Br=1.11T,Hci=816.0kA·m-1和(BH)max=188.8kJ·m-3的高性能。  相似文献   

7.
采用正交实验法系统地研究了复合添加合金元素Ga ,Nb ,Zr,Hf和Pr对纳米双相Nd9-xPrxFe86 .5-y -z -m -nGayNbzZrmHfnB4 .5(x =0 ,2 2 5 ;y ,z ,m ,n =0 .5 ,1.0 )快淬带微观结构和磁性能的影响。结果表明 :复合添加合金元素可以大大地降低Nd2 Fe1 4B和α Fe相的晶粒尺寸 ,并促使快淬带在低辊速下非晶化 ;在退火后样品带中 ,没有发现晶粒的不均匀长大 ,但大量添加合金元素会导致晶粒形貌不够理想。另一方面 ,由于各元素间的交互作用 ,复合添加合金元素使磁性能的变化规律非常复杂。实验发现 ,当Nb的含量为 0 .5 %时 ,增加Pr和Ga的添加量并降低Zr和Hf的添加量可以明显地改善磁性能。成分为Nd2 .2 5Pr6 .75Fe84 .5Ga1 .5Nb0 .5B4 .5的合金 ,在 15m·s- 1 辊速下获得的最佳磁性能为Jr=1.0 5 3T ,iHc=5 3 0 .9kA·m- 1 ,(BH) max=12 4kJ·m- 3。  相似文献   

8.
Nd10.1Fe(83.7-x-y)CoxZryB6.2永磁材料结构和磁性能的研究   总被引:7,自引:0,他引:7  
采用熔体快淬及晶化热处理工艺制备Nd10.1Fe(83.7-x-y)CoxZryB6.2纳米晶永磁材料. 在快淬速度为18 m·s-1时, 经710 ℃/4 min晶化处理后, Nd10.1Fe76Co5Zr2.7B6.2粘结磁体出现最佳磁性能, 分别为Br=0.67 T, JHc=754 kA·m-1, (BH)max=75.1 kJ·m-3. 粘结磁体的磁性能对于快淬速度非常敏感. 随着合金元素的添加, 出现最佳磁性能的快淬速度逐渐减少. 为了得到最佳磁性能, 除了选择合适的快淬速度外, 添加合适的合金元素变得非常重要.添加Zr元素抑制了亚稳相的析出以及细化了晶粒尺寸.比较不加Zr元素的Nd10.1Fe78.7Co5B6.2, 添加Zr元素晶化温度增加了9 ℃, 表明Zr元素也增加了快淬薄带的热稳定性.  相似文献   

9.
研究了Ti和C添加对Nd9.4Fe79.6-xTixB11-yCy(x=0,1,2,4,6;y=0.5,1.5,3)合金晶化方式、显微结构和磁性能的影响规律。结果表明,适量Ti和C添加改变了合金的晶化方式,使-αFe相和Nd2Fe14B相同时从Nd9.4Fe75.6Ti4B10.5C0.5非晶基体中析出,避免了先析出相晶粒的长大,利于获得细小均匀的显微结构。适量Ti和C添加的Nd-Fe-B-Ti-C非晶合金在退火过程中易析出细小弥散的TiC和TiB2相,可作为形核质点促进形核,且可抑制晶粒长大,最终形成细小均匀的显微结构。综合性能较佳的Nd9.4Fe75.6Ti4B10.5C0.5合金退磁曲线具有优异的方形度,最佳退火条件下合金薄带的剩磁Br为0.91 T,矫顽力iHc为976 kA.m-1,磁能积(BH)max达135 kJ.m-3。文章最后对Ti和C添加合金微结构的形成机制进行了探讨。  相似文献   

10.
粉末烧结钕铁硼激光熔凝过渡区组织的研究   总被引:3,自引:0,他引:3  
对粉末烧结Nd15Fe77B8永磁体表面激光熔凝池中过渡区的组织进行了研究. 结果表明, 过渡区由初生相α-Fe和富Nd的Nd2Fe14B两相组成.离激光熔凝池与基体的分界面越远, α-Fe二次枝晶间距越小, 而Nd2Fe14B以胞状液固界面向上推进的速度逐步加快, 最后越过了先析出的α-Fe, 导致在过渡区结束时α-Fe相不再出现.当粉末烧结Nd15Fe77B8磁体易磁化轴的取向为z轴时, 过渡区的α-Fe体积百分数最大; Nd2Fe14B以与z轴夹角30°~50°的方向生长, 直到进入胞状区, 其生长方向才逐步调整到与z轴基本平行.当磁体易磁化轴取向为随机分布时, 过渡区α-Fe的体积分数最小; 过渡区Nd2Fe14B选择在基体内易磁化轴在XOY面内的等轴晶Nd2Fe14B上生长. 当磁体的易磁化轴取向分别为x或y轴时, 过渡区Nd2Fe14B直接在基体的Nd2Fe14B上生长, 并在过渡区结束前后, 1个过渡区Nd2Fe14B上平均分化出3个胞状区Nd2Fe14B柱状晶.  相似文献   

11.
采用正电子寿命谱和双探头Doppler展宽测量在原子尺度上研究了α-Fe/Nd2Fe14B复合纳米晶的界面结构.正电子寿命研究表明, α-Fe/Nd2Fe14B复合纳米晶存在两类界面.一类为非晶界面层, 正电子湮没寿命为155 ps; 另一类为具有原子空位的松懈界面, 含有空位尺寸大于1~2个铁原子空位的结构自由体积, 正电子湮没寿命为246 ps.电子-正电子湮没光子的共谐Doppler展宽测量表明这类松懈界面富集非磁性原子Nd和B, 这将削弱α-Fe/Nd2Fe14B复合纳米晶晶粒间的磁交换耦合.  相似文献   

12.
采用熔体快淬和晶化处理的方法制取了成分为Nd9.2Fe84.8-xZrxB6的复相纳米永磁材料,并通过XRD,SEM和FESEM研究了Zr的添加量对该种材料微观结构的影响,结合VSM测量结果,进一步分析了Zr的添加效果。结果表明,当Zr含量为0.8%(原子分数)时,能对α-Fe相晶粒长大起到良好的抑制作用;过少的Zr不能很好地起到抑制α-Fe相晶粒长大的作用;但过量的Zr能和Fe形成一种新相,通过观察和分析,证明它是一种没有软磁特性的相,但能促使α-Fe的长大。Zr含量为0.8%的材料经700℃×20 m in的晶化处理可以获得最佳的微观组织和性能,其性能为:Br=0.725 T;Hc j=401.2 kA.m-1;BHm=86.8 kJ.m-3。  相似文献   

13.
研究了稀土元素Pr对快淬(Nd1-xPrx)10.5(FeCoZr)83.5B6(x=0,0.2,0.4,0.6,0.8,1.0)合金显微组织结构和粘结磁体磁性能的影响。通过部分过快淬获得由非晶和微晶共同组成的条屑,在实验优化的退火条件下晶化处理后,制备出最佳磁性能的系列粘结磁体。随Pr含量的增加,磁体的内禀矫顽力Hci单调上升,剩磁Br单调下降,(BH)m在x=0.6~0.8处达到最大值70.6kJ·m-3。Pr元素使合金非晶态的晶化转变温度和转化能降低,合金的显微组织结构变得较粗大和较不均匀,从而使快淬粘结磁体剩磁降低,但Pr2Fe14B化合物较高的磁晶各向异性场使磁体的内禀矫顽力提高。  相似文献   

14.
采用了X射线衍射、扫描电镜和振动样品磁强计,研究了富稀土钕铁硼Nd_(10.5)Pr_(2.5)Fe_(80)Nb_1B_6合金真空感应熔炼、0.60~0.76 mm吸铸片的凝固过程和凝固择优取向特征。结果显示:0.76 mm吸铸片贴模面Nd_(10.5)Pr_(2.5)Fe_(80)Nb_1B_6因较高的冷却速度抑制α-Fe相的析出,过冷液体导致2∶14∶1相大量形核、沿热流方向等轴晶快速凝固,等轴晶组织具有垂直贴模面(006)磁织构,最后为富稀土相凝固;随着凝固界面的推进、冷却速度降低到一临界值以下,凝固机制发生改变,较低的冷却速度有利初生α-Fe相以树枝晶生长,随后2∶14∶1相在α-Fe相旁大量形核,成分过冷的液体有利2∶14∶1相以厚片状晶以[410]方向凝固,最后液体为富稀土相。0.60 mm吸铸片(Nd,Pr)2Fe14B从两侧贴模面形核以柱状晶向内部生长,最大长度超过吸铸片厚度一半,α-Fe相受到较大冷却速度的抑制,数量大幅度减少,0.60 mm吸铸片[006]磁取向进一步优化,剩磁提高73%,矫顽力提高到189.61 k A·m-1。  相似文献   

15.
高性能含镨快淬(Nd,Pr)12(FeCoZr)82B6粘结磁体的制备   总被引:9,自引:3,他引:9  
采用过快淬加晶化退火处理的方法,研究了含有Pr的近正分快淬(Nd,Pr)12(FeCoZr)82B6粘结磁体制备工艺,粘结出的磁体磁性能为:Br=0.669T,Hci=811kA·m-1,Hcb=434kA·m-1,(BH)m=75kJ·m-3。合金快淬态的组成和显微结构、晶化退火温度、晶化退火时间直接影响磁体的磁性能,以24m·s-1速度快淬,并在655℃退火10min,可获得最佳磁性能。实验制备的粘结快淬(Nd,Pr)12(FeCeZr)82B6磁体(密度6 1g·cm-3)磁性能为:Br=0 669T,Hci=811kA·m-1,Hcb=434kA·m-1,(BH)m=75kJ·m-3  相似文献   

16.
利用超声波分解Fe(CO)5,分解产物通过非均相沉淀获得Nd2Fe14B/Fe双相复合磁粉,采用放电等离子烧结技术(Spark Plasma Sintering,SPS)制备出致密的Nd2Fe14B/α-Fe双相复合磁体.研究发现,伴随着软磁相Fe名义含量的增加,硬磁相Nd2Fe14B颗粒表面包覆的纳米Fe颗粒明显增加,包覆更加均匀,双相复合磁体的最大磁能积(BH)m和剩磁Br逐渐增大,在Fe名义含量为15%时获得最佳磁性能:(BH)m=128.2 kJ·m-3(16.1 MGOe),Br=0.92 Hcj=607.35 kA·-1.当Fe名义含量超过15%时,纳米Fe在Nd2Fe14B颗粒表面团聚现象加剧,致使磁能积和剩磁下降.  相似文献   

17.
双相纳米晶永磁体的研究   总被引:14,自引:2,他引:14  
Nd8 .5Fe75Co5Cu1 Nb1 Zr3B6 .5合金熔体经 18m·s- 1 快淬 ,在 670℃ / 4min退火处理后 ,制备成的粘结磁体的最佳磁性能为 :Br=0 .68T(6 8kGs) ,JHc=62 0 .3kA·m- 1 (7 8kOe) ,(BH) max=74kJ·m- 3(9 3 3MGOe)。在低Nd合金中复合添加Zr和Cu ,提高了内禀矫顽力 ,改善了磁滞回线的矩形度 ,从而提高了最大磁能积。  相似文献   

18.
为分析影响热变形钕铁硼磁体矫顽力的因素,制备了3种不含Dy,Ga热变形磁体,磁体成分分别为Nd10.5Pr2.5Fe80Nb1B6,Nd11.5Fe81.8B6.0Nb0.7+6%Nd67Cu33及Nd10.5Pr2.5Fe80Nb1B6+6%Nd67Cu33,由Nd-Fe-B三元相图计算了富稀土晶界相体积分数v,实验结果表明:v对富稀土钕铁硼热变形磁体矫顽力的贡献为98.10 k A·m-1·%-1,比v对贫稀土钕铁硼混粉热变形磁体矫顽力的贡献低36%~44%;由v=1-a3/[(a+h)2(a+3h)]计算了富稀土晶界相厚度h,发现在v相同条件下热变形钕铁硼磁体晶界相厚度h随主相片状晶等效平均晶粒尺寸a的减小虽然减薄,但a占主导作用导致磁体的矫顽力仍然提高;在片状晶等效平均晶粒尺寸a相近的条件下,热变形钕铁硼磁体晶界相厚度随晶界相体积分数v的增加而变厚,主相片状晶的磁绝缘效果提高导致热变形磁体的矫顽力上升。  相似文献   

19.
纳米晶稀土永磁材料的制备和磁性   总被引:7,自引:1,他引:7  
介绍了纳米晶稀土永磁材料的制备和磁性方面的有关研究工作, 主要内容有: 低钕快淬Fe3B基钕铁硼新型纳米晶复合稀土永磁材料的相结构与磁性, 快淬Pr2Fe14B/α-Fe型纳米复合稀土永磁材料的微结构与永磁性, 快淬Sm-Co基稀土永磁材料的织构与磁各向异性的关系, 以及纳米晶稀土永磁材料的矫顽力机制和模拟计算研究等.  相似文献   

20.
纳米复合永磁材料晶粒择优取向的研究   总被引:4,自引:0,他引:4  
利用熔体快淬技术制备把(Nd11.4Fe82.9B5.7)0.99M1(其中M=Zr,Nb,Ga,Zr Ga,Nb Ga)快淬带。发现Ga元素的添加对Nd2Fe14B相晶粒的C轴垂直于带面取向是有利的。复合添加Zr Ga或Nb Ga可获得较好的磁性能,并且进一步提高了快淬带晶粒的择优取向。取向度随厚度改变发生明显的变化,当带厚约为120μm时取向度最高。热处理可使淬带织构度增加,但导致晶粒粗化。利用深冷技术对纳米晶复合快淬带进行超低温处理。发现深冷处理有利于快淬带织构度的增强,且晶粒尺寸几乎不变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号