首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
采用硼氢化钠还原法,制备了炭黑负载的Pd及Pd Co双金属催化剂,研究了葡萄糖在不同催化剂上的氧化行为.通过X射线粉末衍射、透射电镜及X射线光电子能谱及电化学活性面积测定对催化剂进行了表征;利用循环伏安、及计时电流等电化学测试方法研究了Pd负载量及Pd/Co质量比对Pd-Co/C催化剂的葡萄糖电催化氧化活性与稳定性的影响.结果表明,当Pd的负载量为5%、Pd/Co质量比为3时,所得Pd_3Co_1/C催化剂对葡萄糖的电催化氧化活性与稳定性明显优于Pd/C催化剂,且单金属Co/C催化剂没有催化活性.钴助剂的引入提高了Pd的分散度,增大了电化学活性面积,从而提高了Pd的利用效率与催化性能.  相似文献   

2.
甲醇在Pd基电催化剂上的氧化   总被引:2,自引:0,他引:2  
以多壁碳纳米管(MWCNT)和碳黑为载体, 用交替微波加热的方法制备了担载型Pd电催化剂, 并表征了其微观形貌和电化学性能. 透射电镜(TEM)和X射线衍射(XRD)结果显示, Pd在MWCNT载体上有较好的分散度, 平均粒径为4 nm. 循环伏安、计时电位和交流阻抗的测试结果表明, 在碱性溶液中, Pd/MWCNT显示出良好的甲醇氧化性能. 在Pd/MWCNT催化剂上, 甲醇氧化的起始电位比在Pt/C上负移100 mV 左右. Pd/MWCNT高的催化活性不仅与它的高的活性表面积有关, 而且和Pd与载体MWCNT之间的协同作用有关.  相似文献   

3.
《电化学》2017,(6)
制备对醇氧化反应具有优异电活性的钯催化剂是醇燃料电池研究的重要内容.本文用硼氢化钠还原法制备了钯纳米颗粒,然后沉积在Fe_3O_4/C复合物表面,得到了不同Fe_3O_4负载量的Pd/Fe_3O_4-C催化剂.透射电镜(TEM)检测显示,钯纳米颗粒均匀地分散在Fe_3O_4/C表面.对制备好的Pd/Fe_3O_4-C催化剂进行了循环伏安法(CV)、计时电流(CA)和电化学阻抗谱(EIS)的测试,研究了其在碱性介质中对C1-C3醇类(甲醇、乙醇和丙醇)氧化的电催化活性.结果表明,所制备的不同Fe_3O_4负载量的Pd/Fe_3O_4(2%)-C、Pd/Fe_3O_4(5%)-C、Pd/Fe_3O_4(10%)-C和Pd/C催化剂中,Pd/Fe_3O_4(5%)-C催化剂表现出最高的醇氧化电流密度.依据循环伏安(CV)数据,Pd/Fe_3O_4(5%)-C催化剂对甲醇、乙醇、正丙醇和异丙醇氧化的阳极峰电流密度分别是Pd/C催化剂的1.7、1.4、1.7和1.3倍.Pd/Fe_3O_4(5%)-C催化剂对乙醇氧化的电荷传递电阻也远低于Pd/C催化剂.制备的所有催化剂对C1-C3醇类电氧化的电流密度大小排序如下:正丙醇乙醇甲醇异丙醇.此外,碳粉中Fe_3O_4纳米颗粒的存在提高了钯纳米颗粒的电化学稳定性.  相似文献   

4.
以石墨粉为原料, 采用Hummers法液相氧化合成了氧化石墨(GO), 然后用化学一步还原制得石墨烯负载钯催化剂. X射线衍射(XRD)、透射电镜(TEM)表征表明, Pd在石墨烯载体上有较好的分散度, 粒径为3-5 nm. 电化学活性面积(EASA)、循环伏安(CV)、计时电流(CA)和计时电位(CP)等电化学测试表明, 与传统Pd/Vulcan XC-72相比, Pd/石墨烯催化剂对碱性介质中乙醇电催化氧化的催化活性有了很大的提高.  相似文献   

5.
以石墨粉为原料, 采用Hummers法液相氧化合成了氧化石墨(GO), 然后用化学一步还原制得石墨烯负载钯催化剂. X射线衍射(XRD)、透射电镜(TEM)表征表明, Pd在石墨烯载体上有较好的分散度, 粒径为3-5 nm. 电化学活性面积(EASA)、循环伏安(CV)、计时电流(CA)和计时电位(CP)等电化学测试表明, 与传统Pd/Vulcan XC-72相比, Pd/石墨烯催化剂对碱性介质中乙醇电催化氧化的催化活性有了很大的提高.  相似文献   

6.
以石墨粉为原料, 采用Hummers法液相氧化合成了氧化石墨(GO), 然后用化学一步还原制得石墨烯负载钯催化剂. X射线衍射(XRD)、透射电镜(TEM)表征表明, Pd在石墨烯载体上有较好的分散度, 粒径为3-5 nm. 电化学活性面积(EASA)、循环伏安(CV)、计时电流(CA)和计时电位(CP)等电化学测试表明, 与传统Pd/Vulcan XC-72相比, Pd/石墨烯催化剂对碱性介质中乙醇电催化氧化的催化活性有了很大的提高.  相似文献   

7.
以石墨粉为原料, 采用Hummers法液相氧化合成了氧化石墨(GO), 然后用化学一步还原制得石墨烯负载钯催化剂. X射线衍射(XRD)、透射电镜(TEM)表征表明, Pd在石墨烯载体上有较好的分散度, 粒径为3-5 nm. 电化学活性面积(EASA)、循环伏安(CV)、计时电流(CA)和计时电位(CP)等电化学测试表明, 与传统Pd/Vulcan XC-72相比, Pd/石墨烯催化剂对碱性介质中乙醇电催化氧化的催化活性有了很大的提高.  相似文献   

8.
以石墨粉为原料, 采用Hummers法液相氧化合成了氧化石墨(GO), 然后用化学一步还原制得石墨烯负载钯催化剂. X射线衍射(XRD)、透射电镜(TEM)表征表明, Pd在石墨烯载体上有较好的分散度, 粒径为3-5 nm. 电化学活性面积(EASA)、循环伏安(CV)、计时电流(CA)和计时电位(CP)等电化学测试表明, 与传统Pd/Vulcan XC-72相比, Pd/石墨烯催化剂对碱性介质中乙醇电催化氧化的催化活性有了很大的提高.  相似文献   

9.
以石墨粉为原料, 采用Hummers法液相氧化合成了氧化石墨(GO), 然后用化学一步还原制得石墨烯负载钯催化剂. X射线衍射(XRD)、透射电镜(TEM)表征表明, Pd在石墨烯载体上有较好的分散度, 粒径为3-5 nm. 电化学活性面积(EASA)、循环伏安(CV)、计时电流(CA)和计时电位(CP)等电化学测试表明, 与传统Pd/Vulcan XC-72相比, Pd/石墨烯催化剂对碱性介质中乙醇电催化氧化的催化活性有了很大的提高.  相似文献   

10.
以石墨粉为原料, 采用Hummers法液相氧化合成了氧化石墨(GO), 然后用化学一步还原制得石墨烯负载钯催化剂. X射线衍射(XRD)、透射电镜(TEM)表征表明, Pd在石墨烯载体上有较好的分散度, 粒径为3-5 nm. 电化学活性面积(EASA)、循环伏安(CV)、计时电流(CA)和计时电位(CP)等电化学测试表明, 与传统Pd/Vulcan XC-72相比, Pd/石墨烯催化剂对碱性介质中乙醇电催化氧化的催化活性有了很大的提高.  相似文献   

11.
甲醇羰基化制醋酸镍基双金属催化剂的研究   总被引:10,自引:3,他引:7  
在NiC催化剂中分别添加了九种不同的金属组分,在加压和碘甲烷助剂的存在下考察了第二金属组分及含量对甲醇羰基化反应性能的影响。结果表明:分别添加Pd、Mo、La三种组分可不同程度地提高NiC催化剂的羰基化活性,其中以Pd的效果最佳,Ni和Pd之间存在着明显的相互作用。Pd含量为1%时,羰基化活性达到最高,甲醇转化率和醋酸收率分别为9240%和4973%。Ni-PdC双金属催化剂的活性中心主要为Ni0,还有少量Pd0存在,Pd能够显著促进NiO的还原,这可能是氢溢流现象所致  相似文献   

12.
研究了不同Pd和Pt原子比的炭载Pd-Pt(Pd-Pt/C)催化剂对氧还原的电催化性能和抗甲醇性能。 发现当Pd和Pt原子比从20∶0增加至17∶3时,Pd-Pt/C催化剂对氧还原的电催化活性逐步增加,而对甲醇氧化均元电催化活性,表明有很好的抗甲醇能力。 但当Pd和Pt原子比增加至16∶4时,虽然对氧还原的电催化活性还在增加,但抗甲醇能力下降。 所以当Pd-Pt原子比为17∶3时,Pd-Pt/C有很好的对氧还原的电催化性能和抗甲醇能力,可以用作直接甲醇燃料电池(DMFC)的阴极催化剂。  相似文献   

13.
A facile, one-step reduction route was developed to synthesize Pd-rich carbon-supported Pd–Pt alloy electrocatalysts of different Pd/Pt atomic ratios. As-prepared Pd–Pt/C catalysts exhibit a single phase fcc structure and an expansion lattice parameter. Comparison of the oxygen reduction reaction (ORR) on the Pd–Pt/C alloy catalysts indicates that the Pd3Pt1/C bimetallic catalyst exhibits the highest ORR activity among all the Pd–Pt alloy catalysts and shows a comparative ORR activity with the commercial Pt/C catalyst. Moreover, all the Pd–Pt alloy catalysts exhibited much higher methanol tolerance during the ORR than the commercial Pt/C catalyst. High methanol tolerance of the Pd–Pt alloy catalysts could be attributed to the weak adsorption of methanol induced by the composition effect, to the presence of Pd atoms and to the formation of Pd-based alloys.  相似文献   

14.
用交替微波法制备了碳化钨与多壁碳纳米管复合材料(WC/MWCNT),以该材料为载体制备了Pd基催化剂(Pd-WC/MWCNT),并将催化剂用于醇的催化氧化反应.结果表明,Pd-WC/MWCNT催化剂对乙醇的催化氧化活性是Pd/C催化剂的5倍.交换电流密度测量和反应活化能计算表明,Pd-WC/WIWCNT催化剂对乙醇催化氧化的交换电流密度比Pd/C大两个数量级,反应活化能低一倍以上.Pd-WC/MWCNT催化剂催化氧化乙醇性能的大幅度提高是碳化钨与Pd颗粒的协同效应和碳纳米管的结构效应共同作用的结果.  相似文献   

15.
Pd and PdNi nanoparticles supported on Vulcan XC-72 carbon were prepared by a chemical reduction with formic acid process. The catalysts were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry, and chronoamperometry. The results showed that the Pd and PdNi nanoparticles, which were uniformly dispersed on carbon, were 2–10 nm in diameters. The PdNi/C catalyst has higher electrocatalytic activity for methanol oxidation in alkaline media than a comparative Pd/C catalyst and shows great potential as less expensive electrocatalyst for methanol electrooxidation in alkaline media in direct methanol fuel cells.  相似文献   

16.
采用固相-液相两步混合法制备了由碳纳米管(CNTs)和石墨烯纳米片(GNPs)组成的CNTs-GNPs复合载体。以乙二醇还原法将Pd纳米粒子沉积于复合碳载体上,制得Pd/CNTs-GNPs催化剂。以透射电子显微镜、X射线衍射及X射线光电子能谱表征催化剂的形貌、组成和结构;以电化学方法考察催化剂的甲醇电氧化性能。结果表明,Pd/CNTs-GNPs(1/4)(GNPs质量分数为1/4)催化剂具有较大的电化学表面积和较高的甲醇电氧化活性,其甲醇氧化峰电流密度可达Pd/CNTs催化剂的1.97倍。催化剂的高活性得益于CNTs-GNPs载体的一维/二维复合结构使Pd纳米粒子具有良好的分散性能。计时电流实验表明,与单一载体负载Pd催化剂相比,复合载体负载Pd催化剂具有较强的抗中毒能力。  相似文献   

17.
制备对醇氧化反应具有优异电活性的钯催化剂是醇燃料电池研究的重要内容。本文用硼氢化钠还原法制备了钯纳米颗粒, 然后沉积在Fe3O4/C复合物表面, 得到了不同Fe3O4负载量的Pd/Fe3O4-C催化剂. 透射电镜(TEM)图显示钯纳米颗粒均匀地分散在Fe3O4/C表面. 对制备好的Pd/Fe3O4-C催化剂进行了循环伏安法(CV)、计时电流(CA)和电化学阻抗谱(EIS)的测试, 研究了其在碱性介质中对C1-C3醇类(甲醇、乙醇和丙醇)氧化的电催化活性. 结果表明, 所制备的不同Fe3O4负载量的Pd/Fe3O4(2%)-C,Pd/Fe3O4(5%)-C, Pd/Fe3O4(10%)-C和Pd/C催化剂中, Pd/Fe3O4(5%)-C催化剂表现出最高的醇氧化电流密度. 依据循环伏安(CV)数据,Pd/Fe3O4(5%)-C催化剂对甲醇、乙醇、正丙醇和异丙醇氧化的阳极峰电流密度分别是Pd/C催化剂的1.7、1.4、1.7和1.3倍. Pd/Fe3O4(5%)-C催化剂对乙醇氧化的电荷传递电阻也远低于Pd/C催化剂. 制备的所有催化剂对C1-C3醇类电氧化的电流密度大小排序如下: 正丙醇﹥乙醇﹥甲醇﹥异丙醇. 此外, 碳粉中Fe3O4纳米颗粒的存在提高了钯纳米颗粒的电化学稳定性.  相似文献   

18.
Nanostructured Fe/Pd-Fe catalysts are prepared first by the deposition of Fe-Zn onto the Fe electrode surface, followed by replacement of the Zn by Pd at open circuit potential in a Pd-containing alkaline solution. The surface morphology and composition of coatings are determined by scanning electron microscopy and energy dispersive X-ray techniques. The results show that the Fe/Pd-Fe coatings are porous structure and the average particle size of Pd-Fe is low, in the range of 30–80 nm. The electrocatalytic activity and stability of Fe/Pd-Fe electrodes for oxidation of methanol are examined by cyclic voltammetry and chronoamperometry techniques. The new Fe/Pd-Fe catalyst has higher electrocatalytic activity and better stability for the electro-oxidation of methanol in an alkaline media than flat Pd and smooth Fe catalysts. The onset potential and peak potential on Fe/Pd-Fe catalysts are more negative than that on flat Pd and smooth Fe electrodes for methanol electro-oxidation. All results show that the nanostructured Fe/Pd-Fe electrode is a promising catalyst towards methanol oxidation in alkaline media for fuel cell applications.  相似文献   

19.
钯基纳米材料是甲酸电氧化反应的优良催化剂.本工作制备了两个系列钯基催化剂,并考察了聚苯胺对钯上甲酸电氧化反应的助催化作用.一种是以聚苯胺为基底,在其表面电沉积钯纳米粒子,制得nPANI/Pd催化剂(n表示聚合苯胺的循环数);另一种是直接在商业Pd/C催化剂表面电聚合苯胺,制得Pd/C/nPANI催化剂.结果显示,聚苯胺单独存在时对甲酸电氧化反应没有催化活性,但其可对钯上甲酸电氧化反应呈现明显的促进作用,且促进作用与聚苯胺的厚度(聚合循环数)密切相关.在两个系列催化剂中,15PANI/Pd和Pd/C/20PANI显示出最高的催化性能.15PANI/Pd中钯的质量比催化活性是纯钯催化剂的7.5倍; Pd/C/20PANI中钯的质量比催化活性和本征催化活性分别是商业Pd/C催化剂的2.3和3.3倍.钯催化性能的提升与聚苯胺和钯纳米粒子间的电子效应有关.  相似文献   

20.
ZnO对Au-Pd/CeO_2催化剂甲醇部分氧化制氢性能的影响   总被引:1,自引:0,他引:1  
采用沉积沉淀法制备了Au-Pd双金属催化剂, 研究了ZnO对Au-Pd/CeO_2催化剂甲醇部分氧化性能的影响, 并运用N_2吸附、 XRD、 UV-Vis、 TPR、 H2-TPD和CO-IR等手段对催化剂进行了表征. 结果表明, ZnO的引入减少了Pd活性中心, 降低了催化剂的活性, 但提高了催化剂H2选择性和降低了CO选择性. Au-Pd/ZnO-CeO_2催化剂的TPR表明, 在约200℃时开始有部分ZnO被还原, CO-IR显示CO吸收峰移向低频, 这些结果表明Au-Pd/ZnO-CeO_2催化剂中Pd和Zn之间发生了相互作用. Pd和Zn之间相互作用抑制了Pd的甲醇分解活性, 有利于H2和CO_2的生成, 使Au-Pd/ZnO-CeO_2催化剂表现出较高的H2选择性和较低的CO选择性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号