首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 139 毫秒
1.
将(N-吡咯)己基硫醇自组装在金膜上,并采用化学氧化聚合法使吡咯与羧基功能化吡咯衍生物在自组装薄膜上进行共聚.然后对共聚物进行羧基活化处理.探针DNA通过与共聚物膜之间的共价键作用而固定在其表面上,接着与靶向DNA杂交.同时采用傅立叶红外变换光谱仪和X-射线光电子能谱仪对共聚物在DNA固定前后的化学组成进行详细表征.采...  相似文献   

2.
本文简要回顾了本人在中科院化学所30年的研究历程,重点介绍了在共轭高分子(包括导电聚吡咯电化学、聚合物发光电化学池(LEC)和共轭聚合物给体光伏材料)方面的研究成果。在导电聚吡咯电化学方面,对导电聚吡咯的电化学制备和电化学性质进行了深入研究,阐明了各种电化学聚合条件对制备的导电聚吡咯电导和力学强度等的影响,发现电解液溶剂给电子性(Donor number)对吡咯电化学聚合制备的导电聚吡咯电导的影响:溶剂Donor number越小制备的导电聚吡咯电导越高;使用非离子表面活性剂添加剂在水溶液中制备出表面非常光滑和高力学强度的导电聚吡咯薄膜;对于吡咯电化学聚合提出了电解液阴离子参与的阳离子自由基聚合机理,并推到出吡咯电化学聚合反应的动力学方程;发现在NaNO3水溶液中电化学聚合制备的导电聚吡咯除存在主链氧化、对阴离子掺杂结构外,还存在质子酸掺杂结构;阐明了导电聚吡咯在水溶液中电化学还原和再氧化的机理及其电化学过程的可逆性和稳定性,以及导电聚吡咯在有机电解液中特殊的第一次还原和再氧化的机理。在LEC方面,通过交流阻抗法确认了LEC的电化学掺杂机理和p-i-n结构,合成了多种适用于LEC的主链带离子导电单元的兼具离子导电性的发光嵌段共聚物,避免了LEC活性层中存在的发光聚合物和离子导电聚合物的分相问题;使用离子液体作为电解质制备了室温准冷冻p-i-n结LEC,改善了LEC的电致发光性能。在共轭聚合物给体光伏材料方面,我们提出了通过共轭侧链来拓宽聚合物吸收和提高空穴迁移率的分子设计思想,设计和合成了一系列带共轭侧链的二维共轭聚噻吩衍生物以及基于二噻吩取代苯并二噻吩的窄带隙高效二维共轭聚合物给体光伏材料。我们使用烷硫基取代进一步降低了这类二维共轭聚合物的HOMO能级从而进一步提高了其光伏性能。最后介绍了本组二维共轭聚合物给体光伏材料在非富勒烯聚合物太阳能电池方面的最新研究进展。  相似文献   

3.
导电聚合物由于其优越的稳定性和电化学性质,一直是蛋白质芯片敏感膜的研究热点.采用化学氧化聚合法分别制备出氨基和羧基功能化导电聚吡咯共聚物薄膜,通过调节体系单体比例(体积比)来改变导电共聚物的化学结构.采用傅里叶变换红外光谱表征了共聚物的化学组成,利用电化学循环伏安法考察共聚物薄膜的电化学活性变化.在此基础上,采用表面等离子谐振生化分析仪原位考察了牛血清白蛋白(BSA)在共聚物薄膜上的吸附动力学过程.由于共聚物薄膜上的功能基团的种类和含量不同,导致BSA吸附动力学和吸附量的差异.可以明显看出,蛋白质更容易在具有高的氨基密度或低的羧基密度的导电聚吡咯薄膜上进行吸附,随着氨基基团含量的增加,BSA在聚合物薄膜上的吸附量增大.相反,随着羧基基团含量的增大,BSA在共聚物薄膜上的吸附量减小.通过上述方法,可以控制蛋白质在导电聚合物上的吸附行为,进而为构建出更为敏感的、可精确控制的蛋白质芯片奠定基础.  相似文献   

4.
溴化乙锭标记DNA电化学探针的研究   总被引:12,自引:0,他引:12  
以乙基-(3-二甲基丙基)碳化二亚胺盐酸盐(EDC)为偶联活化剂,将电化学活性物质溴化乙锭(Ethidiumbromide,EB)成功地标记在人工合成的含有21个碱基的寡聚DNA片段上,制备成EB标记DNA探针;用电化学方法将待测样品DNA片段固定在石墨电极表面,在一定的温度、pH值和离子强度条件下与EB标记DNA探针进行杂交反应,从而对靶序列DNA片段进行识别和测定.此外,还讨论了该探针的电化学性质、荧光光谱、待测DNA片段在石墨电极表面的电化学固定、DNA链碱基长度对EB标记DNA电化学探针的影响以及探针的选择性、重现性和寿命,结果令人满意.  相似文献   

5.
胡武洪 《化学学报》2009,67(21):2402-2406
采用密度泛函(DFT)方法在6-31g(d)水平下研究了聚吡咯和聚吡咯并[3,4-c]吡咯, 以及它们的单体和低聚物的电子结构. 对中心键的键长、电荷密度以及Weberg键级的研究表明, 随着主链聚合度的增加, 其共轭性增强. 对聚合物还进行了能带结构和态密度分析. 结果发现, 在3位聚合的并环化合物具有最优的导电性能, 其能隙仅有0.25 eV, 可以作为潜在的导电聚合物材料.  相似文献   

6.
长链DNA在金基底上的固定化和电化学标记   总被引:5,自引:1,他引:4  
本文提出在金基底上用阳离子聚电解质———聚二烯丙基二甲基胺氯化物 (poly(dial lyldimethylammoniumchloride) ,PDDA)自组装膜固定长链DNA的方法 ,用DiffuseReflectanceIn frared ,XPS和STM技术进行表征 ,并对DNA杂交进行电化学标记  相似文献   

7.
将单链DNA(ssDNA)固定到丝网印刷碳电极上构成电化学DNA传感器,采用电化学指示剂,建立DNA杂交的检测方法.Co(phen)33+电化学指示剂通过钴盐与配体邻菲罗啉络合制备,采用等离子发射光谱法(ICP-AES)和核磁共振法(NMR)表征功能基团,采用循环伏安法(CV)分析指示剂的电化学特性,并以此为基础研究ssDNA在电极表面的固定及DNA杂交过程.本研究探讨了直接吸附、静电吸附与键合等3种ssD-NA在电极表面的固定方法,结果表明,静电吸附法和键合法具有较高的ssDNA固定量,采用静电吸附法固定探针的电极杂交目标DNA后,Co(phen)33+易于嵌入双链DNA (dsDNA)中,CV峰电流(ip)信号随目标DNA浓度增加.本研究采用静电吸附ssDNA的电极检测DNA杂交,实验表明,当探针固定液中ssDNA浓度为5 mg/L时,目标DNA浓度在6.65×10- 8~4.26× 10-6mol/L范围内,Co(phen)33+在dsDNA修饰电极上ip值与DNA浓度呈良好的线性关系,R2为0.9819.本研究为建立新的微生物分子分型手段提供了初步依据.  相似文献   

8.
将Ullazine结构基元引入到聚合物主链或侧链中,分别与吡咯并吡咯二酮(DPP)、2,5-双(三甲基锡)噻吩共聚得到了二元共聚物PB和三元共聚物PT,分别利用凝胶渗透色谱和热重分析表征了聚合物的分子量和热稳定性,并研究了聚合物的光物理、电化学和光伏性能.基于共聚物PB和PT作为电子给体材料的聚合物太阳能电池器件测试结果表明,二元共聚物PB由于具有较低的能级水平从而获得较高开路电压,而侧链含Ullazine结构基元的三元共聚物PT具有更宽的吸收光谱和更高的空穴迁移率,获得了更高的短路电流和能量转换效率.  相似文献   

9.
李永舫 《电化学》2004,10(4):369
简要介绍本研究组自上世纪80年代以来在导电聚合物的电化学制备和电化学性质研究中取得的一些主要成果,包括吡咯电化学聚合条件的影响、电化学聚合反应机理及其反应动力学、导电聚吡咯的两种掺杂结构及其两步电化学氧化还原过程和电化学过氧化的机理、导电聚苯胺的电化学性质、导电聚合物稳定性的电化学解释等等.  相似文献   

10.
杨涛  杨婕  张伟  焦奎 《分析测试学报》2007,26(3):431-437,444
介绍了DNA电化学生物传感器的研究现状、原理和结构,对DNA探针固定(尤其是聚合物与自组装膜法固定DNA)以及应用方面的最新研究进展进行了综述。  相似文献   

11.
In order to exploit the applications of polypyrrole (PPy) derivatives in biosensors and bioelectronics, the different immobilization mechanisms of biomolecules onto differently functionalized conducting PPy films are investigated. Pyrrole and pyrrole derivatives with carboxyl and amino groups were copolymerized with ω‐(N‐pyrrolyl)‐octylthiol self‐assembled on Au surface by the method of the chemical polymerization to form a layer of the copolymer film, i.e., poly[pyrrole‐co‐(N‐pyrrolyl)‐caproic acid] (poly(Py‐co‐PyCA)) and poly[pyrrole‐co‐(N‐pyrrolyl)‐hexylamine] (poly(Py‐co‐PyHA)), in which the carboxyl groups in poly(Py‐co‐PyCA) were activated to the ester groups. Based on the structure characteristics, the immobilization/hybridization of DNA molecules on PPy, poly(Py‐co‐PyCA) and poly(Py‐co‐PyHA) were surveyed by cyclic voltammograms measurements. For differently functionalized copolymers, the immobilization mechanisms of DNA are various. Besides the electrochemical properties of the composite electrodes of PPy and its copolymers being detected before and after bovine serum albumin (BSA) adsorption, the kinetic process of protein binding was determined by surface plasmon resonance of spectroscopy. Since few BSA molecules could anchor onto the PPy and its copolymers surfaces, it suggests this kind of conducting polymers can be applied as the protein‐resistant material.  相似文献   

12.
《Electroanalysis》2006,18(9):873-881
In this paper, we present an impedance‐based DNA biosensor using thionine intercalation to amplify DNA hybridization signal. Beacon single‐stranded DNA (ssDNA) probe and mercaptoacetic acid were self‐assembled onto a Au electrode by forming Au? S bonds. These beacon ssDNAs were hybridized with the complementary sequences around the loop structure. Then thionine was intercalated into the double‐stranded DNA (dsDNA) immobilized on the Au electrode surface. Due to the neutralization of the negative charges of dsDNA by the intercalated thionine, the electronic transfer resistance (Ret) of the DNA modified Au electrode was significantly diminished. Herein, the decreased value of Ret resulted from the thionine intercalating into dsDNA was employed as the hybridization signal. SDS was used to reduce the unspecific adsorption between ssDNA and thionine. Several experimental conditions, including the surface coverage of ssDNA probe on Au electrode, the hybridization temperature and time were all optimized. Moreover, the hybridization reactions of the unstructured linear ssDNA probe and the structured beacon ssDNA probe with their complementary sequences were compared in this work. The sensitivity of the presented DNA biosensor highlighted that the intercalation of thionine into dsDNA was an efficient approach to amplify the hybridization signal using impedance detection technique. Additionally, in this DNA biosensing protocol, beacon ssDNA has a good ability to distinguish target DNA sequences. This results in a higher specificity than using traditional unstructured DNA probe.  相似文献   

13.
Adsorbed layers of "comb-type" copolymers consisting of PEG chains grafted onto a poly(l-lysine) (PLL) backbone on niobium oxide substrates were studied by colloid-probe AFM in order to characterize the interfacial forces associated with coatings of varying architectures (PEG/PLL ratios and PEG chain lengths) and their relevance to protein resistance. The steric and electrostatic forces measured varied substantially with the architecture of the PLL-g-PEG copolymers. Varying the ionic strength of the buffer solutions enabled discrimination between electrostatic and steric-entropic contributions to the net interfacial force. For high PEG grafting densities the steric component was most prominent, but at low ionic strengths and high grafting densities, a repulsive electrostatic surface force was also observed; its origin was assigned to the niobia charges beneath the copolymer, as insufficient protonated amine groups in the PLL backbone were available for compensation of the oxide surface charges. For lower grafting densities and lower ionic strengths there was a substantial attractive electrostatic contribution arising from interaction of the electrical double layer arising from the protonated amine groups, with that of the silica probe surface (as under low ionic strength conditions, the electrical double layer was thicker than the PEG layer). For these PLL-g-PEG coatings the net interfacial force can thus be a markedly varying superposition of electrostatic and steric-entropic contributions, depending on various factors. The force curves correlate with protein adsorption data, demonstrating the utility of AFM colloid-probe force measurements for quantitative analysis of surface forces and how they determine interfacial interactions with proteins. Such characterization of the net interfacial forces is essential to elucidate the multiple types of interfacial forces relevant to the interactions between PLL-g-PEG coatings and proteins and to advance interpretation of protein adsorption or repellence beyond the oversimplified steric barrier model; in particular, our data demonstrate the importance of an ionic-strength-dependent minimum PEG layer thickness to screen the electrostatic interactions of charged interfaces.  相似文献   

14.
In this work, the objective was to synthesize a compatibilizer that can electrostatically adsorb onto cellulose fibers, in fiber-based composites, to enhance the interaction between the fibers and non-polar polymer matrices. This physical route to attach the compatibilizer onto and thereby modify a fiber surface is convenient since it can be performed in water under mild conditions. Polystyrene (PS) was used for the high molecular weight, non-polar, block and poly(dimethylamino)ethyl methacrylate (PDMAEMA) was used as the polar block, which was subsequently quaternized to obtain cationic charges. The block copolymer self-assembles in water into cationic micelles and the adsorption to both silicon oxide surfaces and cellulose model surfaces was studied. The micelles spread out on the surface after heat treatment and contact angle measurements showed that the contact angles against water increased significantly after this treatment. AFM force measurements were performed with a PS probe to study the adhesive properties. The adhesion increased with increasing contact time for the treated surfaces, probably due to entanglements between the polystyrene blocks at the treated surface and the probe. This demonstrates that the use of this type of amphiphilic block copolymer is a promising route to improve the compatibility between charged reinforcing materials, such as cellulose-based fibers/fibrils, and hydrophobic matrices in composite materials.  相似文献   

15.
In this paper, we report a method of transferring complementary target DNA from an aqueous solution onto a solid surface by using affinity microcontact printing. In this approach, the probe DNA is first immobilized on the surface of an aminated poly(dimethylsiloxane) (PDMS) stamp. After a complementary target DNA hybridizes with the probe DNA on the stamp surface, the PDMS stamp is printed on an aminated glass slide. By using fluorescent microscopy, we show that only complementary target DNA, but not noncomplementary DNA, can be captured onto the surface of the stamp and then transferred to the aminated glass slide. The transfer of DNA can be attributed to the stronger electrostatic attraction between DNA and amine groups compared to the hydrogen bonds between the hybridized DNA molecules. We also investigate several factors that may influence the transfer of DNA, such as the surface density of amine groups, hybridization conditions, and contamination from unreacted PDMS monomers.  相似文献   

16.
《Analytical letters》2012,45(3):467-482
Abstract

This paper describes a reagentless electrochemical DNA biosensor applied to the detection of human immunodeficiency virus (HIV) sequences based on electrochemical impedance spectroscopy (EIS). The novel DNA biosensor has been elaborated by means of an opposite‐charged adsorption Au‐Ag nanocomposite to a conductive polymer polypyrrole (PPy) modified platinum electrode (Pt) and self‐assembly the mercapto oligonucleotide probes onto the surface of modified electrode via the nanocomposite. The duplex formation was detected by measuring the electrochemical impedance signal of nucleic acids in phosphate buffer solution (PBS). Such response is based on the concomitant conductivity changes of the PPy film and nanocomposite. The reagentless scheme has been characterised using 21‐mer synthetic oligonucleotides as models: parameters affecting the hybridization assay were explored and optimized. The detection limit is 5.0×10?10 M of target oligonucleotides at 3σ. The potential for development of reagentless DNA hybridization analysis in the clinical diagnosis is being pursued.  相似文献   

17.
In this study graphite electrodes modified by a thin DNA‐imprinted polypyrrole layer, which was able to bind specific target‐DNA, are reported. For this aim, electrochemical synthesis of polypyrrole was performed on a pencil graphite electrode by cyclic voltammetry (CV) or by potential pulse sequences (PPS). The modified electrode surface was used for electrochemical determination of target‐DNA by differential pulse voltammetry. According to our best knowledge this is a first report on the application of DNA‐imprinted polymer for the determination of target‐DNA. The results showed that the molecularly imprinted polypyrrole (MIPPy) layer that formed on the carbon electrode surface was sensitive for target‐DNA, while the nonimprinted polypyrrole layer was not sensitive to the same target‐DNA. Comparison of electrodes modified using PPS and CV techniques is presented.  相似文献   

18.
In this work, successful polymer coating of COOH‐functionalized multiwalled carbon nanotubes (MWCNTs) via reversible addition fragmentation chain transfer (RAFT) mediated emulsion polymerization is reported. The method used amphiphilic macro‐RAFT copolymers as stabilizers for MWCNT dispersions, followed by their subsequent coating with poly(methyl methacrylate‐co‐butyl acrylate). Poly(allylamine hydrochloride) was initially used to change the charge on the surface of the MWCNTs to facilitate adsorption of negatively charged macro‐RAFT copolymer onto their surface via electrostatic interactions. After polymerization, the resultant latex was found to contain uniform polymer‐coated MWCNTs where polymer layer thickness could be controlled by the amount of monomer fed into the reaction. The polymer‐coated MWCNTs were demonstrated to be dispersible in both polar and nonpolar solvents. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
A new approach to the realization of the electrochemical DNA hybridization probe is described. It is based on the exchange of chloride ion between the polypyrrole layer and the buffer. The shape of the cyclic voltammogram is modulated by the negative charge density at this interface, resulting from the immobilized target DNA. The negative charge density increases when the complementary DNA hybridizes with the probe DNA. The hybridization event can be clearly seen in the cyclic voltammogram before and after the addition of the probe DNA. The immobilization is accomplished via the Mg2+ bridging complex between phosphonic acid groups of the poly[2,5-dithienyl-(N-3-phosphorylpropyl)pyrrole] grafted at the polypyrrole surface and the phosphate groups of the target DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号