首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
谢允斌  黄美荣  李新贵 《化学进展》2006,18(12):1677-1683
聚吡咯具有较高的电导率与良好的环境稳定性,被视为继聚苯胺之后最有工业化应用前景的导电高分子材料之一。聚吡咯与常规聚合物基体如聚乙烯醇、聚氯乙烯等形成的复合膜不仅可以综合聚吡咯奇异的多功能性与常规聚合物的易成膜性和低成本性于一体,而且可望发挥两者的协同效应,从而大大拓宽其应用领域。该研究已经成为导电聚合物研究领域中的又一新热点。作者系统论述了制备这类功能复合膜的两种典型制备方法,并在分析各自特点的基础上提出了改进与发展方向,指出聚吡咯复合膜具有广泛可调的电导率、快速的电学响应性以及稳定的电致变色性等多种功能,在透明导电膜、化学传感器、生物分离膜、电致变色膜领域具有诱人的应用前景。  相似文献   

2.
导电聚吡咯的研究   总被引:15,自引:0,他引:15  
介绍了1995年获国家自然科学二等奖项目“导电聚吡咯的研究”(主要完成人:钱人元、李永舫、毕先同、裴启兵、鄢宝珍)的主要研究成果以及获奖后的研究新进展,涉及的研究内容包括导电聚吡咯的电化学聚合过程和机理、导电聚吡咯的结构、稳定性、电化学性质以及导电聚吡咯复合材料的制备等。  相似文献   

3.
本文简要回顾了本人在中科院化学所30年的研究历程,重点介绍了在共轭高分子(包括导电聚吡咯电化学、聚合物发光电化学池(LEC)和共轭聚合物给体光伏材料)方面的研究成果。在导电聚吡咯电化学方面,对导电聚吡咯的电化学制备和电化学性质进行了深入研究,阐明了各种电化学聚合条件对制备的导电聚吡咯电导和力学强度等的影响,发现电解液溶剂给电子性(Donor number)对吡咯电化学聚合制备的导电聚吡咯电导的影响:溶剂Donor number越小制备的导电聚吡咯电导越高;使用非离子表面活性剂添加剂在水溶液中制备出表面非常光滑和高力学强度的导电聚吡咯薄膜;对于吡咯电化学聚合提出了电解液阴离子参与的阳离子自由基聚合机理,并推到出吡咯电化学聚合反应的动力学方程;发现在NaNO3水溶液中电化学聚合制备的导电聚吡咯除存在主链氧化、对阴离子掺杂结构外,还存在质子酸掺杂结构;阐明了导电聚吡咯在水溶液中电化学还原和再氧化的机理及其电化学过程的可逆性和稳定性,以及导电聚吡咯在有机电解液中特殊的第一次还原和再氧化的机理。在LEC方面,通过交流阻抗法确认了LEC的电化学掺杂机理和p-i-n结构,合成了多种适用于LEC的主链带离子导电单元的兼具离子导电性的发光嵌段共聚物,避免了LEC活性层中存在的发光聚合物和离子导电聚合物的分相问题;使用离子液体作为电解质制备了室温准冷冻p-i-n结LEC,改善了LEC的电致发光性能。在共轭聚合物给体光伏材料方面,我们提出了通过共轭侧链来拓宽聚合物吸收和提高空穴迁移率的分子设计思想,设计和合成了一系列带共轭侧链的二维共轭聚噻吩衍生物以及基于二噻吩取代苯并二噻吩的窄带隙高效二维共轭聚合物给体光伏材料。我们使用烷硫基取代进一步降低了这类二维共轭聚合物的HOMO能级从而进一步提高了其光伏性能。最后介绍了本组二维共轭聚合物给体光伏材料在非富勒烯聚合物太阳能电池方面的最新研究进展。  相似文献   

4.
聚丙烯酰吡咯作为蛋白质吸附材料的研究   总被引:1,自引:0,他引:1  
张治红  梁平  闫福丰  赵瑞  梁燕  闫立军  郑先君 《化学学报》2009,67(17):2019-2024
近些年, 具有电活性的聚合物在生物分子吸附材料方面的应用越来越广. 而导电聚合物的前聚体化合物的合成(如带吡咯基团的聚合物)对于生物分子的吸附研究非常重要. 详细研究了牛血清白蛋白(BSA)在导电聚合物前聚体—聚丙烯酰吡咯(PAP)表面上的吸附规律. 首先, 采用自由基聚合方法合成PAP, 通过spin-coating方法将PAP涂覆到50 nm厚的金膜上, 制备出均匀聚合物薄膜. 然后, 采用傅立叶转换红外光谱(FT-IR)和X射线光电子能谱(XPS)对PAP的化学结构及元素构成进行了分析, 同时考察了PAP膜在不同pH值的生物缓冲液环境中的水接触角. 在详细研究了聚合物膜的化学结构和表面性质之后, 采用表面等离子体谐振仪(SPR)原位监测BSA在PAP上的吸附动力学过程, 发现其吸附行为主要受缓冲液的pH值和BSA浓度的影响. 在不同生物缓冲液环境下, 蛋白质和聚合物膜之间的各种作用力会发生变化, 最终导致蛋白质吸附行为以及吸附量的不同, 这为以后制备更加敏感的导电蛋白质芯片奠定了基础.  相似文献   

5.
用角分布X射线光电子能谱(XPS)测试和样品原位加热相结合的方法研究了阴离子是对甲苯磺酸根的电生导电聚吡咯的化学和聚集态结构.其结果表明聚吡咯表面约几个原子层内原子的相对浓度依下述次序递减:C>O>S>N;导电聚吡咯中的氮原子至少有吡咯氮和氧化态氮两种;在200℃加热以后聚合物链不受影响,但阴离子向表面迁移,同时氧化态氮大大减少.  相似文献   

6.
在导电聚合物含量较小时,含核壳结构的导电聚合物复合粒子就可以具有和本体相当的导电率,且加工性好,近年来这种核壳结构微粒的制备已引起了科学家们的广泛关注.Armes等[制备了导电聚吡咯、导电聚苯胺包覆聚苯乙烯的核壳结构胶体粒子及聚苯胺和二氧化硅的纳米复合物.刘正平等用改进的方法在粒径为116nm的单分散聚苯乙烯乳胶粒子上包覆聚吡咯,  相似文献   

7.
聚吡咯(PPy)以其环境稳定性好、低毒、可调的导电性等优点,在热电材料研究方面日益受到人们的关注。采用纳米结构导电聚合物或将有机导电聚合物材料与高导电性的碳纳米粒子进行复合制备聚合物/碳纳米粒子复合材料,可以有效地改善其热电性能。本文结合该领域近年来的研究进展,重点讨论了PPy及其复合热电材料的研究结果,对一维纳米结构PPy的制备也进行了论述。  相似文献   

8.
无标记DNA在氨基改性导电聚吡咯表面的固定/杂交   总被引:1,自引:0,他引:1  
通过吡咯(Py)与其衍生物——6-吡咯己胺(PyHA)的共聚物聚(吡咯-co-6-吡咯己胺)[poly(Py-co-PyHA)]的合成研究,并采用电化学循环伏安法来考察体系的电化学活性.在缓冲溶液中,由于探针DNA链上的负电荷与共聚物分子链上的正电荷之间存在强烈的静电吸引力,使得DNA能够固定在导电聚合物膜上.实验结果证明,目标DNA和聚吡咯薄膜之间不存在非特异性吸附,而能和探针DNA进行顺利杂交.此结果为以后研究更为敏感的DNA固定及导电聚合物敏感膜提供了实验基础.  相似文献   

9.
导电聚合物具有良好的导电性能,可以作为分子导线使电子在生物活性物质与电极间直接传递,是构建生物传感器的一种新型材料.聚吡咯(PPy)具有导电性、生物相容性、易固定等特点,在传感器中用于固定生物活性物质有着良好的应用前景.该文简要介绍了导电聚吡咯的合成方法及掺杂机理,重点评述了聚吡咯用于固定生物活性物质构建生物传感器的多...  相似文献   

10.
导电聚合物由于其优越的稳定性和电化学性质,一直是蛋白质芯片敏感膜的研究热点.采用化学氧化聚合法分别制备出氨基和羧基功能化导电聚吡咯共聚物薄膜,通过调节体系单体比例(体积比)来改变导电共聚物的化学结构.采用傅里叶变换红外光谱表征了共聚物的化学组成,利用电化学循环伏安法考察共聚物薄膜的电化学活性变化.在此基础上,采用表面等离子谐振生化分析仪原位考察了牛血清白蛋白(BSA)在共聚物薄膜上的吸附动力学过程.由于共聚物薄膜上的功能基团的种类和含量不同,导致BSA吸附动力学和吸附量的差异.可以明显看出,蛋白质更容易在具有高的氨基密度或低的羧基密度的导电聚吡咯薄膜上进行吸附,随着氨基基团含量的增加,BSA在聚合物薄膜上的吸附量增大.相反,随着羧基基团含量的增大,BSA在共聚物薄膜上的吸附量减小.通过上述方法,可以控制蛋白质在导电聚合物上的吸附行为,进而为构建出更为敏感的、可精确控制的蛋白质芯片奠定基础.  相似文献   

11.
运用量子化学密度泛函B3LYP方法,在6-311++G(d,p)基组水平上对邻位和间位取代1-氯葸醌的分子内卤键进行了研究.用电子定域函数和“分子中的原子,,理论对分子内卤键的性质进行了电子密度拓扑分析.通过对计算得到的密度矩阵进行σ-π兀分离,得到了π-键的键径和分子图,并讨论了。电荷密度和兀电荷密度对卤键的影响.结果表明,键鞍点和环鞍点处的电子密度拓扑性质均可作为衡量分子内卤键强度的量度.键鞍点和环鞍点处的电荷密度P越大,键鞍点与环鞍点的距离越大,卤键强度越大.除σ电荷密度外,π电荷密度对分子内卤键的性质也有明显影响.  相似文献   

12.
The geometries and electronic properties of six polymers based on furo[3,4-b]pyridine-type heterocyclics were studied using density functional theory (DFT) at the B3LYP/6-31G(d) level. Bond lengths, bond critical point (BCP) properties, nucleus-independent chemical shift (NICS), and Wiberg bond indexes (WBIs) are analyzed and correlated with conduction properties. The changes of bond length, BCP properties, NICS, and WBIs all show that the conjugational degree is increased with main chain extension. The changes of NICS also show that the conjugation is stronger in the central section than in the outer section. And the HOMO–LUMO energy gap (E g) is decreased steadily upon chain elongation. The results suggest that the six polymers all have lower energy gaps (in the range of 0.39–0.58 eV), which indicate that these proposed polymers are good candidates for the conductive materials.  相似文献   

13.
The N-H...O hydrogen bonds are analyzed for formamide dimer and its simple fluorine derivatives representing a wide spectrum of more or less covalent interactions. The calculations were performed at the MP2/6-311++G(d,p) level of approximation. To explain the nature of such interactions, the Bader theory was also applied, and the characteristics of the bond critical points (BCPs) were analyzed: the electron density at BCP and its Laplacian, the electron energy density at BCP and its components, the potential electron energy density, and the kinetic electron energy density. These parameters are used to justify the statement that some of the interactions analyzed are partly covalent in nature. An analysis of the interaction energy components for the systems considered indicates that the covalent character of the hydrogen bond is manifested by a markedly increased contribution of the delocalization term relative to the electrostatic interaction energy. Moreover, the ratio of stabilizing the delocalization/electrostatic contributions grows linearly with the decreasing lengths of the hydrogen bond.  相似文献   

14.
The best quantity correlated to the electronic energy band gap is found for alkali and alkaline-earth metal oxides and halides with face centered cubic (fcc) structure based on density functional theory and Bader's atom-in-molecule theory. Previous studies show the correlation of the band gap to the ground state electron density at the bond critical point (BCP). Whereas, in quantum mechanics, the gap between the energy levels of one dimensional square well potential is inversely proportional to the square of the width of the well which is the metal–nonmetal chemical bond length in our case. These motivate the proposition of a new quantity Q, the ratio of the density at the BCP to the square of the bond length. Our study reveals that, for the aforementioned materials, the band gap has a strong correlation to Q when they are multiplied by the density at the BCP.  相似文献   

15.
16.
A computational study of the monomers and hydrogen-bonded dimers of 2-pyrrolidone was executed at different DFT levels and basis sets. The above dimeric complexes were treated theoretically to elucidate the nature of the intermolecular hydrogen bonds, geometry, thermodynamic parameters, interaction energies, and charge transfer. The processes of dimer formation from monomers and concerted reactions of double proton transfer were considered. The evolution of geometry, vibrational frequencies, charge distribution, and AIM properties in going from monomers to dimers was systematically followed. The solvent effects upon dimer formation were investigated in terms of the self-consistent reaction field (SCRF Onsager model). For the monomers and three dimers, vibrational frequencies were calculated and the changes in frequencies of the vibrations most sensitive to complexation were discussed. The orbital interactions were shown to lengthen the X-H (X = N, O) bond and lower its vibrational frequency (a red shift). To better understand the nature of the corresponding intermolecular interactions, we performed natural bond orbital (NBO) analysis. Topological analysis of electron density at bond critical points (BCP) was executed for complex molecules using the Bader's atoms in molecules (AIM) theory. The interaction energies were calculated, and the basis set superposition errors (BSSE) were estimated systematically. Satisfactory correlations between the structural parameters, interaction energies, and electron density characteristics at BCP were found.  相似文献   

17.
The electron density distributions in crystals of five previously studied DMAN complexes and five Schiff bases (two new ones) have been analysed in terms of various properties of bond critical points (BCPs) found in the pair-wise interactions in their lattices. We analysed the continua of interactions including covalent/ionic bonds as well as hydrogen bonds and all other types of weak interactions for all pairs of interacting atoms. The charge density at BCPs and local kinetic and potential energy densities vary exponentially with internuclear distance (or other measures of separation). The parameters of the dependences appear to be characteristics of particular pairs of atom types. The Laplacian and the total (sum of kinetic and potential) energy density at BCPs show similar behaviour with the dependence being of the Morse type. The components lambda1, lambda2, lambda3 of the Laplacian at BCPs vary systematically with internuclear distance according to the type of atom pair. For lambda1 and lambda2 the distribution is of the exponential type, whereas lambda3 does not seem to follow any simple functional form, consistent with previous theoretical findings. Analytical nonlinear dependences of Laplacian on charge density have been found. They agree reasonably well with those obtained by least square fit of the Laplacian to charge density data. There are four distinct regions of the [symbol: see text]2rho(BCP)/rho(BCP) space, generated by E(BCP) = 0 and G(BCP)/rho(BCP) = 1 conditions. Two regions clearly correspond to the shared-shell and closed-shell interactions and the other two to some intermediate situation.  相似文献   

18.
The crystal of qudra-aquabis(isonicotinato-N)copper(Ⅱ),Cu[(NC5H4COO)]2 . 4H2O was synthesized via hydrothermal method. Single crystal X-ray analysis at 100K (Siemens SmartCCD) and 25K (Nonius KappaCCD) are performed. The results reveal that the Cu atom is octahedrally coordinated by two Nitrogen atoms of pyridine rings in the axial positions and the four Oxygen atoms of the four water molecules in an equatorial orientation. The octahedral Cu(lI) center shows a large Jahn-Teller distortion with the distances of the Cu-N 2.0253(6)A, Cu-O(3)2.0124(6)~, Cu-O(4) 2.4304(7)A. By means of the hydrogen bonding connections, this compound is formed a 3D framework. In addition, the thermal displacement of each atom at 25K is about three-times smaller than that at 100K. Electron density distribution of this compound at 25K and 100K is also analyzed and compared in terms of multipole model. All topological properties based on X-ray diffraction result and theoretical calculation including the bond critical points (BCP), Laplacian of the electron density and electron density at the BCP will be presented.  相似文献   

19.
Within the framework of the molecular orbital (MO) theory, the addition of one electron to the 4sigma antibonding orbital of the neutral (F...H) system or the removal of one electron from its pi nonbonding orbitals, leading to (F...H)- and to (F...H)+, has permitted the investigation of these charge perturbations on the bond properties of the hydrogen fluoride molecule by using the topological analysis of rho(r). For (F...H), (F...H)-, and (F...H)+, the topological and energetic properties calculated at the F...H bond critical point (BCP) have been related to the 3sigma bonding molecular orbital (BMO) distribution, as this orbital is the main contributor to rho(r) at the interatomic surface. The analysis has been carried out at several F...H internuclear distances, ranging from 0.8 to 3.0 A. As far as the BMO distribution results from its interaction with the average Coulomb and exchange potential generated by the charge filling the other MOs, and in particular by the pi and 4sigma electrons, the comparison between the BCP properties calculated for the charged systems and those corresponding to the neutral one permits the interpretation of the differences in terms of the charge perturbation on BMO. Along with the BCP properties of (F...H), (F...H)-, and (F...H)+, the interaction energy magnitudes of these systems have been also calculated within the same range of internuclear distances, indicating that the applied perturbations do not break the F-H bond but soften it, giving rise to the stable species (F-H)- and (F-H)+. Comparing the three systems at their equilibrium geometries, the most stable configuration, which corresponds to the unperturbed (F...H) system, shows the highest quantity and the most locally concentrated charge density distribution, along with the largest total electron energy density magnitude, at the interatomic surface as a consequence of the BMO contraction toward the fluorine nucleus in (F...H)+ and of the BMO expansion toward both nuclei in (F...H)-. On the other hand, if the comparison is carried out at the equilibrium distance of (F...H) (d(eq)0), this one exhibits both the smallest total energy density magnitude and the largest quantity of bonding charge at the interatomic surface. Hence, being the signature of the most stable configuration, the characteristic magnitudes of the neutral system rho(d(eq)0), inverted triangle2 rho(d(eq)0), and H(d(eq)0) appear as boundary conditions at the interatomic surface of its unperturbed and relaxed electron distribution.  相似文献   

20.
A density functional theory study was used to investigate the quantum aspects of the solvent effects on the kinetic and mechanism of the ene reaction of 1‐phenyl‐1,3,4‐triazolin‐2,5‐dione and 2‐methyl‐2‐butene. Using the B3LYP/6–311++ G(d,p) level of the theory, reaction rates have been calculated in the various solvents and good agreement with the experimental data has been obtained. Natural bond orbital analysis has been applied to calculate the stabilization energy of N18? H19 bond during the reaction. Topological analysis of quantum theory of atom in molecule (QTAIM) studies for the electron charge density in the bond critical point (BCP) of N18? H19 bond of the transition states (TSs) in different solvents shows a linear correlation with the interaction energy. It is also seen form the QTAIM analysis that increase in the electron density in the BCP of N18? H19, raises the corresponding vibrational frequency. Average calculated ratio of 0.37 for kinetic energy density to local potential energy density at the BCPs as functions of N18? H19 bond length in different media confirmed covalent nature of this bond. Using the concepts of the global electrophilicity index, chemical hardness and electronic chemical potentials, some correlations with the rate constants and interaction energy have been established. Mechanism and kinetic studies on 1‐phenyl‐1,3,4‐triazolin‐2,5‐dione and 2‐methyl‐2‐butene ene reaction suggests that the reaction rate will boost with interaction energy enhancement. Interaction energy of the TS depends on the solvent nature and is directly related to electron density of the bonds involved in the reaction proceeding, global electrophilicity index and electronic chemical potential. However, the chemical hardness relationship is reversed. Finally, an interesting and direct correlation between the imaginary vibrational frequency of the N18? H19 critical bond and its electron density at the TS has been obtained. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号