首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   27篇
化学   293篇
晶体学   3篇
力学   5篇
数学   15篇
物理学   62篇
  2023年   7篇
  2022年   17篇
  2021年   46篇
  2020年   26篇
  2019年   24篇
  2018年   14篇
  2017年   10篇
  2016年   31篇
  2015年   19篇
  2014年   21篇
  2013年   35篇
  2012年   33篇
  2011年   21篇
  2010年   10篇
  2009年   6篇
  2008年   16篇
  2007年   14篇
  2006年   2篇
  2005年   4篇
  2004年   5篇
  2003年   7篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1917年   2篇
排序方式: 共有378条查询结果,搜索用时 78 毫秒
1.
Phase‐type distribution closure properties are utilized to devise algorithms for generating reliability functions of systems with basic structures. These structures include series, parallel, K‐out‐of‐N, and standby structures with perfect/imperfect switch. The algorithms form a method for system reliability modeling and analysis based on the relationship between the system lifetime and component lifetimes for general structures. The proposed method is suitable for functional system reliability analysis, which can produce reliability functions of systems with independent components instead of only system reliability values. Once the system reliability function is obtained, other reliability measures such as the system's hazard function and mean time to failure can be obtained efficiently using only matrix algebra. Dimensional and numerical comparisons with computerized symbolic processing are also presented to show the superiority of the proposed method.  相似文献   
2.
In this study, we introduce newly defined Gamma operators which preserve constants and e2μ·, μ>0 functions. In accordance with this purpose, we focus on their approximation properties such as uniform convergence, rate of convergence, asymptotic formula, and saturation results. Superior properties of introduced operators have been tested both theoretically and numerically in certain senses to highlight the performance of the new constructions of Gamma operators.  相似文献   
3.
Molecularly imprinted polymer (MIP) computational design is expected to become a routine technique prior to synthesis to produce polymers with high affinity and selectivity towards target molecules. Furthermore, using these simulations reduces the cost of optimizing polymerization composition. There are several computational methods used in MIP fabrication and each requires a comprehensive study in order to select a process with results that are most similar to properties exhibited by polymers synthesized through laboratory experiments. Until now, no review has linked computational strategies with experimental results, which are needed to determine the method that is most appropriate for use in designing MIP with high molecular recognition. This review will present an update of the computational approaches started from 2016 until now on quantum mechanics, molecular mechanics and molecular dynamics that have been widely used. It will also discuss the linear correlation between computational results and the polymer performance tests through laboratory experiments to examine to what extent these methods can be relied upon to obtain polymers with high molecular recognition. Based on the literature search, density functional theory (DFT) with various hybrid functions and basis sets is most often used as a theoretical method to provide a shorter MIP manufacturing process as well as good analytical performance as recognition material.  相似文献   
4.
5.
Carbon‐doped titania (C‐TiO2) nanoparticles were synthesized by the sol–gel method at different calcination temperatures (300–600°C) employing titanium tetraisopropoxide (TTIP) as the titanium source and polyoxyethylene sorbitan monooleate (Tween 80) as the carbon source. The physical properties of C‐TiO2 samples were characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic activities were checked through the photodegradation of phenolphthalein (PHP) under ultraviolet irradiation. The UV spectrum showed that the carbon doping extends the absorption range of TiO2 to the visible region. However, the photocatalytic activity is affected by the electron–hole recombination phenomenon, as revealed by the photoluminescence (PL) study. According to the PL spectra, carbon doping reduces the edge‐to‐edge electron–hole recombination. Nevertheless, the number of defect sites is greatly influenced by the calcination temperature of C‐TiO2. C‐TiO2 that was calcined at 400°C showed the highest photodegradation percentage of PHP, which was mainly attributed to the synergic effect of the low direct edge‐to‐edge electron–hole recombination, high content of defect sites, and retention of active electrons on the surface hydroxyl group.  相似文献   
6.
In this study, an ITO (indium tin oxide) based biosensor was constructed to detect SOX2. SOX2 helps the regulation of cell pluripotency and is closely related to early embryonic development, neural and sexual differentiation. SOX2 is amplified and overexpressed in some malignant tumors such as squamous cell, lung, prostate, breast, esophageal cell, colon, ovarian, glioblastoma, pancreatic cancer, gastric cancer, head and neck squamous cell carcinoma. To generate a hydroxylated clean electrode surface, ITO electrodes were treated with NH4OH/H2O2/H2O. Later, ITO‐PET electrode surfaces were modified with 3‐glycidoxypropyl trimethoxysilane (3‐GOPS). Then, Anti‐SOX2 was covalently immobilized onto the electrode surfaces. 3‐GOPS concentration, Anti‐SOX2 concentration and incubation time, SOX2 incubation time were optimized. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were utilized in order to follow up the immobilization processes and the optimization steps of the biosensor. To characterize the analytical properties of constructed immunosensor; linear range, repeatability, reproducibility and regeneration studies were investigated. The linear range of the immunosensor was detected as 0.625 pg/mL–62.5 pg/mL. Square wave voltammetry technique was also applied to the biosensor. Storage life of the biosensor was determined for identifying the possible usability of the biosensor in clinical field. Finally, the designed biosensor was applied to the real human serum samples. The results obtained with the presented biosensor were also compared with ELISA results.  相似文献   
7.
Along with many factors, the change in protein tau isoforms, which has an obvious role in the function of microtubules, is an important biomarker of Alzheimer's disease. The aim of this study is to determine the protein Tau-441 with a portable potentiostat using a practical approach. For this purpose, screen printed electrodes (SPCEs) were first hydroxylated and then functional self-assembled monolayers were formed on the surface with 3-aminopropyltriethoxysilane (APTES). Evidence of anti-Tau being immobilized on to the surface was followed by techniques such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FTIR). The constructed immunosensor showed a linear response within the concentration range of 0.0064–0.8 ng/mL for the target analyte Tau-441 and the limit of detection was found to be 0.0053 ng/mL. In addition, analytical behaviors such as reproducible measurements and storage life of the developed immunosensor with a portable potentiostat were also investigated. It has been demonstrated that Tau-441 can be captured with the help of portable device with sensitivity in CSF environment.  相似文献   
8.
Although the sonophotodynamic method has an effective therapeutic outcome for anticancer treatment compared with the photodynamic method, there are not enough related studies in the literature and this study aims to contribute to the development of sonophotodynamic studies. For this purpose, the Schiff base substituted silicon phthalocyanines were designed and synthesized as effective sensitizer candidates and the photophysicochemical and sonophotochemical features of the phthalocyanines were examined to increase singlet oxygen efficiency. The calculated ΦΔ values indicate that the contribution of substituent groups improved the production of singlet oxygen compared with silicon (IV) phthalocyanine dichloride (SiPcCI2) and also the sonophotochemical applications increased the singlet oxygen yields. The ΦΔ values (ΦΔ = 0.76 for axially bis-{4-[(E)-(pyridin-3-ylimino)methyl]phenol} substituted silicon (IV) phthalocyanine ( 2a ), 0.68 for axially bis-4-[(E)-{[(pyridin-3-yl)methyl]imino}methyl]phenol substituted silicon (IV) phthalocyanine ( 2b ) in photochemical study) reached to ΦΔ = 0.98 for 2a , 0.94 for 2b in sonophotochemical study. This article will enrich the literature on increasing singlet oxygen yield.  相似文献   
9.
In this article, we introduced a novel electrochemical biosensor for the detection of microRNA-126. The biosensor utilizes a hybridization assay combined with multi-walled carbon nanotubes and gold nanorod-decorated screen-printed carbon electrodes. For electrode preparation, gold nanorods were first immobilized onto the surface of bare and multi-walled carbon nanotube-modified screen-printed carbon electrodes, and the thiol tagged-capture probe was immobilized on the electrode surface through gold and thiol group interaction. After the immobilization, thiol tagged-capture probe hybridized with the target sequence. Under optimum conditions, we determined limit of detection (LOD) and limit of quantification (LOQ) as high as 11 nM and 36 nM, respectively.  相似文献   
10.
Cellulose - Textile filaments were fabricated from a solution obtained from carboxymethylated cellulose dissolved in aqueous NaOH solution, by wet spinning in an acid coagulation bath. Spinning is...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号