首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
王琳  薛卫东  廖义中 《化学教育》2007,28(10):3-4,7
介绍了纳米材料的一些应用和几种主要纳米材料(如纳米TiO2、碳纳米管、纳米铁粉等)目前已取得的部分生物效应及毒理学的研究结果;讨论了纳米材料对人体和环境带来的潜在影响,及纳米颗粒材料未来的毒性研究重点,并对纳米材料安全性进行了展望。  相似文献   

2.
碳纳米材料因独特的物理化学性质,而成为纳米产品中使用最多的纳米材料之一.这些纳米材料不可避免地通过各种途径进入环境,其生物安全性研究是碳纳米科技健康发展亟待解决的关键科学问题.寻找和建立针对环境生物体系中碳纳米材料高灵敏、本征的定量检测方法,获得与环境生物体系相关的数据,是推动其环境纳米生物效应和安全性研究的关键.在纳米毒理学研究中,同位素标记分析方法是一种不可替代的定量分析方法,尤其对碳纳米材料,具有独特的优势.结合现代分析技术,可本征、快速、准确、高灵敏地对其纳米生物效应与毒理学进行研究.本文综述了典型碳纳米材料的放射性同位素和稳定性同位素标记技术和方法、检测方法及其在碳纳米材料结构形成、生物体内定量吸收、分布、转化和排泄等纳米生物效应与毒理学分析研究的相关应用,并展望了同位素标记技术在碳纳米材料的毒理学研究和环境健康效应研究中的应用.  相似文献   

3.
碳纳米材料具有良好的力学、电学及化学性能等特点,被人们广泛研究,特别是具有大比表面积、高的电导率和良好生物相容性的碳纳米管和石墨烯更是研究的热点,在电化学领域显示出独特的优势.采用碳纳米材料修饰的电极具有高灵敏度、高选择性及优良的媒介作用.主要阐述了碳纳米材料在修饰电极领域中的应用,从功能及应用上重点探讨了近年来碳纳米管、石墨烯、富勒烯、纳米金刚石等碳纳米材料在修饰电极领域的研究进展.  相似文献   

4.
随着纳米技术的飞速发展,纳米材料的应用日趋广泛.同时,纳米材料的大规模生产和应用对人体健康与生态环境可能产生的安全风险也引起了人们的普遍关注.富勒烯是应用最广泛的纳米材料之一,在水中能形成稳定的水溶性纳米颗粒,进而增大其在环境中的迁移性与生物暴露几率.然而目前对纳米富勒烯(nC60)的环境和毒性效应还知之甚少.本文综合评述了水溶性nC60纳米颗粒的制备、稳定机制、在环境中的迁移特性及其与环境中污染物的相互作用,并着重阐述了nC60可能产生的生物毒性效应.分析表明,nC60的生物毒性效应主要与nC60的表面化学特性和颗粒大小有关,同时环境介质也影响nC60的毒性.最后讨论了nC60生态环境效应研究中应加强的若干方面.  相似文献   

5.
<正>中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室郭良宏研究组在碳纳米管细胞外排生物过程和效应方面取得重要进展,相关研究成果近期发表于国际著名纳米科学期刊Small并作为当期的封底文章(Small,2016,12,5998-6011)。碳纳米管具有独特的理化性质,在电子、环境和纳米医药等领域的应用潜力巨大,而随之带来的潜在环境与健康危害也越来越受到关注。碳纳米管与细胞的相互作用始于物理接触,随后被细胞摄入、外排或者降解,这些生物过程决定了碳纳米管实  相似文献   

6.
张丹丹  吴琪  曲广波  史建波  江桂斌 《化学进展》2022,34(11):2331-2339
人类活动释放的金属纳米颗粒不可避免地进入水环境中。大量研究表明,金属纳米颗粒会对水生生物产生生殖毒性和遗传毒性等,金属纳米颗粒还可能沿着食物链传递,对环境生物和人类健康造成威胁。细胞内金属纳米颗粒定量分析是研究金属纳米颗粒生物效应的重要基础。此外,单细胞之间存在异质性,具有特殊生理特性的细胞个体可能影响细胞群体的命运。而基于细胞群体平均值的定量分析则忽略了细胞个体的异质性,遗漏了对群落具有重要功能的细胞群体信息。因此,在单细胞水平上定量分析水环境中底层营养级的单细胞微生物细胞内金属纳米颗粒,对认识金属纳米颗粒与水生生物的相互作用,评估其进入食物链的潜在风险至关重要。本文梳理了已用于单细胞水生生物体内金属纳米颗粒的单细胞定量分析方法,阐述了它们的工作原理和在相关研究中的应用,总结了各方法的优缺点,期望为今后相关研究的方法选择提供参考,最后展望了该领域未来的研究方向。  相似文献   

7.
随着纳米科技的迅速发展,纳米颗粒物的安全性评价备受人们关注,而由于中枢神经系统有可能是纳米颗粒作用的潜在靶器官,纳米颗粒的中枢神经毒性效应已成为研究热点.本文首先总结了纳米颗粒进入中枢神经系统的可能途径,从生物整体水平和细胞水平分析了纳米颗粒对中枢神经系统的毒性效应研究以及可能的机制.最后讨论了目前的实验研究中所存在的问题与缺陷,并对纳米颗粒的中枢神经毒性效应方面的研究方向进行了探讨.  相似文献   

8.
近年来生物传感新体系的出现,极大地推动了生物医学、分析、环境等研究领域的发展.由于纳米材料具有一些独特的理化性质,常作为载体材料、信号分子等被广泛应用于构建光学生物传感体系.主要介绍了基于金纳米粒子、石墨烯、碳纳米管、量子点、硅纳米粒子几种常见纳米材料构建的光学传感体系及其在生化分析中的应用.分析讨论了这些体系的原理和实际应用,并展望了其研究和应用前景.  相似文献   

9.
宋延超  刘俊秀  张阳阳  史文  马会民 《化学学报》2013,71(12):1607-1610
从三个方面考察与总结了一些常用的纳米材料(如碲化镉量子点,纳米金和碳纳米点)在生物分析应用中存在的问题:(1)纳米材料的毒性. 三种裸露纳米材料的平行比较实验表明,碲化镉量子点能够导致细胞代谢活性下降、细胞发生皱缩、甚至死亡,具有很强的毒性;纳米金在高浓度(30 μg/mL)时可对细胞代谢产生一定的抑制作用;而碳纳米点对细胞几乎不产生影响,具有较好的生物相容性. 三种纳米材料的相对毒性为:碲化镉量子点>>纳米金>碳纳米点. 这种相对毒性还得到了绿豆芽生长抑制实验的支持. (2)纳米材料的非均一性. 这主要表现在以下几个方面:粒径分布的非均一性,表面修饰/性质的非均一性,以及在生物样品(如细胞)中分布的非均一性. (3)纳米材料的环境敏感性或稳定性. 实验表明,碲化镉量子点、纳米金和碳纳米点的光学性质对环境pH的改变均十分敏感,而且纳米金不抗盐,在离子强度较高的盐溶液中不稳定、易聚集. 这些问题的严重性在许多以往的研究中并未引起人们的全面重视. 我们希望通过本研究以及对这些问题的再次探讨,能促使人们在实际应用中对相关纳米材料进行重新的审视和合理的选择. 此外,为克服这些问题,我们在文中提到的一些措施可供参考.  相似文献   

10.
石墨碳纳米材料因其特殊的光学性质而受到广泛关注。石墨碳纳米材料最引人注目的光学性质之一是其独特的拉曼性质,作为拉曼探针,石墨碳纳米材料在对于复杂生物样品,极端测试条件和定量拉曼检测方面都有很好的应用;除了拉曼性质以外,单壁碳纳米管(SWNTs)独特的近红外二区(NIR-II,1000-1700 nm)荧光性质,具有穿透深度大、分辨率高的荧光成像特点,在生物活体成像领域也得到了很好的应用。除了光致发光特性,石墨碳纳米材料还具有优异的光热转换效应,同时具有比表面积大的特点,被广泛应用在针对肿瘤的热疗及其它疗法协同治疗当中。除此之外,石墨碳纳米材料还是一种高效的信号传导基底,可以猝灭激发态的染料和光敏剂,利用该类性质设计的生物传感器和纳米药物,显现出高灵敏、高选择性的特点。本文主要结合本课题组的工作,总结和探讨了石墨碳纳米材料作为光学探针、光热材料和信号传递基底在生化传感领域的应用。  相似文献   

11.
随着纳米技术的飞速发展,纳米材料已成为一种新型材料。纳米材料具有独特的物理化学性质,如小尺寸效应、巨大比表面积、极高的反应活性、量子效应等,这些特性使纳米科学成为当今世界三大支柱科学之一。碳纳米材料是纳米材料领域重要的组成部分,主要包括碳纳米管、富勒烯、石墨烯、纳米钻石及其衍生物等。由于其独特的理化特性,它们在生物医学领域具有广泛的应用前景。另外,随着碳纳米材料的产业化,各种形式的碳纳米材料将以不同途径进入人们的生活,纳米材料的生物安全性问题正受到世界各国科学家的广泛关注。本文综述了这四类碳纳米材料在组织工程、药物/基因载体、生物成像、肿瘤治疗、抗病毒/抗菌、生物传感等生物医学领域的应用现状以及存在的生物安全问题,最后,讨论了该领域未来的研究内容和方向以及亟待研究的重要问题。  相似文献   

12.
基于纳米材料的独特性质,将其引入高分子膜所制得的纳米复合滤膜有望解决目前制约膜技术发展的“上限平衡”问题。 本文综述了碳纳米管、石墨烯、SiO2、TiO2、分子筛、ZrO2以及纳米银颗粒等纳米复合膜在膜分离领域的研究进展。 这些纳米材料对于提高复合膜的机械稳定性、亲水性、选择性、渗透性及抗污染能力等有显著的效果。 此外,对纳米复合膜的发展与应用做了展望,也对其研究中存在的问题和解决方法进行了阐述。  相似文献   

13.
随着纳米技术和纳米材料在工业和生活中的大规模应用,大量的人工纳米颗粒物将不可避免地释放到环境介质(如水体、土壤、沉积物等)中。纳米颗粒物所具有的独特性质已引发人们对它们可能造成的健康风险和环境危害的关注和讨论。本文对目前环境中存在的几种主要典型人工纳米颗粒物的性质、来源、纳米毒性及影响纳米毒性的因素进行详细介绍,阐述了纳米颗粒物对生物的可能致毒机理。在分析纳米颗粒物毒性影响因素过程中,提出了纳米材料在环境中相关毒性研究展望。最后文中总结目前纳米材料在环境中的行为和毒性研究中所存在和面临的问题,并在此基础上提出将来纳米材料毒性的研究方向(如纳米材料的定量结构-活性关系,纳米材料表征技术及慢性毒性研究等)及需要改进的相关建议。  相似文献   

14.
基于纳米材料的独特性质,将其引入高分子膜所制得的纳米复合滤膜有望解决目前制约膜技术发展的"上限平衡"问题。本文综述了碳纳米管、石墨烯、SiO2、TiO2、分子筛、ZrO2以及纳米银颗粒等纳米复合膜在膜分离领域的研究进展。这些纳米材料对于提高复合膜的机械稳定性、亲水性、选择性、渗透性及抗污染能力等有显著的效果。此外,对纳米复合膜的发展与应用做了展望,也对其研究中存在的问题和解决方法进行了阐述。  相似文献   

15.
大长径比金纳米棒的合成及其单细胞毒性研究   总被引:1,自引:0,他引:1  
周海英  周瑞  熊斌  何彦 《分析化学》2012,(12):1807-1815
利用三步晶种生长法合成长径比约为14的大长径比金纳米棒(GNR),利用巯基十一酸(MUDA)对金纳米棒表面进行了生物适应性修饰,并在宏观水平上研究了修饰前后的金纳米棒在对细胞活性的影响。利用单细胞方法分别考察了修饰后的纳米金棒对细胞贴壁过程、增殖速率、细胞内ROS以及骨架排布的影响。虽然MTT细胞活性结果显示内吞后的金纳米棒对细胞无毒,但单细胞毒性分析方法发现,不同浓度纳米金棒对早期贴壁过程有较小的影响,且内吞的纳米金棒在一定程度上促进了细胞的增殖,而高浓度下纳米金棒引起了细胞内ROS含量的升高,并破坏了细胞内骨架纤维排布。本研究建立了用单细胞行为分析纳米颗粒对细胞毒性的方法,证明了以往仅仅利用MTT等宏观手段分析纳米材料生物适应性是不足的。纳米材料在生物医学领域的进一步应用还应考虑单细胞及分子水平上的毒性效应。  相似文献   

16.
张智勇  赵宇亮  柴之芳 《化学进展》2011,23(7):1527-1533
随着纳米技术及其应用的迅速发展,纳米材料对生命体和生态环境的影响引起了社会公众、纳米产品生产厂家、科研工作者和各国政府的密切关注。纳米毒理学已成为纳米技术和毒理学的重要分支。纳米毒理学研究依赖于多种分析方法,用于纳米材料物理化学特性的表征及检测生命体中的纳米材料。放射分析方法由于其高灵敏度、高准确度、原位和体内分析能力,在纳米毒理学研究中能够发挥重要作用。本文综述了放射分析方法在纳米毒理学研究中应用的最新进展,重点介绍了针对不同纳米材料的放射性标记技术。  相似文献   

17.
李文震  梁长海  辛勤 《催化学报》2004,25(10):839-843
 碳纳米管及其衍生纳米碳材料是一种介于富勒烯与石墨之间的碳的存在形式,具有独特的电子性质. 碳纳米材料可与其表面负载的金属活性相产生一种特殊的载体-金属相互作用; 纳米管中电子转移的动力学行为极佳,并且其特殊的纳米级孔道结构有利于反应物及产物的传质,因此作为低温燃料电池催化剂载体备受关注. 综述了多种新型碳纳米材料如碳纳米管、碳纳米纤维、碳纳米盘、碳纳米角和碳纳米分子筛等在低温燃料电池催化剂中的应用,并对其存在的问题和可能的发展方向进行了讨论.  相似文献   

18.
碳纳米管在生物化学传感及生物传输方面的应用   总被引:2,自引:0,他引:2  
碳纳米管作为一种新型一维纳米材料具有独特的结构和性质,在生物传感、生物标记及生物传榆等研究中显示了巨大的潜力.碳纳米管在化学、生物及医药方面的研究应用具有重要的理论意义及实际意义.重点综述了碳纳米管在生物化学传感和生物传榆中的研究应用进展,并展望了其发展趋势和应用前景.  相似文献   

19.
碳纳米管的细胞毒性   总被引:4,自引:0,他引:4  
诸颖  李文新 《中国科学B辑》2008,38(8):677-684
随着碳纳米管(CNTs)的大量生产和应用,它们对环境和人类健康可能带来不利的影响.因此,CNTs的生物效应和安全性研究引起科学家和各国政府的高度重视.扼要介绍了CNTs的体外毒性研究的主要结果,重点讨论了影响CNTs细胞毒性的诸多因素,包括CNTs的种类、所含杂质、CNTs的长度、直径和长径比、CNTs水溶性修饰以及细胞存活率的测定方法.然而,迄今CNTs细胞毒性研究取得的实验结果缺少可比性,分歧也屡见不鲜.为了更准确地评估CNTs对人类健康的潜在风险,我们认为细胞毒性检测中应该充分注意CNTs的化学修饰以及CNTs的定量表征等问题,尤为重要的是要加强CNTs细胞毒性的物理化学机制研究,逐步形成具有纳米毒理学自身特点的毒性检测方法和评估标准.  相似文献   

20.
DNA是构建纳米技术和生物传感技术新设备的良好构建体。DNA生物传感器由于具有灵敏度高、选择性好等特点,近年来获得了飞速发展。研究发现,金属纳米粒子(MNPs)、碳基纳米材料等一系列纳米材料在传感器设计中提高了电化学DNA传感器的传感性能。本文侧重介绍了场效应晶体管、石墨烯、碳纳米管等新型纳米传感材料,以及基于这些材料的DNA生物传感器的最新进展,最后展望了DNA生物传感器的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号