首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 192 毫秒
1.
反相悬浮聚合法合成超强吸水剂   总被引:12,自引:1,他引:11  
探讨采用反相悬浮聚合法、合成聚丙烯酸盐超强吸水剂的工艺条件。结果表明:反应液中和废、单体浓度反应引发温度及交联剂种类及用量,对聚合反应的稳定进行有着很大的影响。采用本法制成的超强吸水剂,其吸去离子水能力达1200-1400g/g。制成的吸水剂凝胶粒子有一定的粒径分布。  相似文献   

2.
反相悬浮聚合法合成超强吸水剂   总被引:23,自引:0,他引:23  
以两性高分子作悬浮稳定剂,用反相悬浮聚合法合成了聚(丙烯酸盐-丙烯酰胺)类超强吸水剂.研究了交联剂、稳定剂、引发剂等用量、中和程度、单体组成及链转移剂等聚合条件对吸水剂吸水性能的影响.得到了吸蒸馏水1050mL/g及吸0.9%NaCl溶液86mL/g的超强吸水剂.此外,还比较了含不同反离子的聚丙烯酸类吸水剂的吸水性能  相似文献   

3.
以两性高分子作反相悬浮稳定剂合成吸水剂   总被引:2,自引:0,他引:2  
田大听 《合成化学》2003,11(1):41-46
以聚(甲基丙烯酸十二酯-丙烯酸)两性共聚物为稳定剂,用反相悬浮聚合法合成了丙烯酸/丙烯酰胺/甲基丙烯酸羟乙酯三元共聚型超强吸水剂:吸蒸馏水1150mL.g^-1,吸0.9%NaCl溶液91mL.g^-1,研究了稳定剂结构及用量,单体组成,交联剂,链转移剂,中和程度等聚合条件及吸水剂性能的影响,实验表明甲基丙烯酸十二酯-丙烯酸共聚物是一种很好的反相悬浮稳定剂。  相似文献   

4.
高吸水性树脂聚丙烯酸钠盐制备工艺研究   总被引:11,自引:0,他引:11  
研究他聚俩烯酸钠在溶液聚合中,引发剂、交联剂、丙烯酸中和度、单体浓度和反应温度对树脂吸水性的影响,从中获得最佳合成工艺,制得树脂性能为吸去离子水1400g/g,吸0。9%NaCl溶液150g/g,吸水速率快,保水性较好。  相似文献   

5.
吸水性淀粉-丙烯腈接枝共聚物的一步合成   总被引:6,自引:0,他引:6  
以硝酸铈铵为引发剂,在几种水-有机溶剂体系中一步合成了吸水性淀粉-丙烯腈接枝共聚物。其中所含的PAN均聚物比水作溶剂时的多。在水-正丁醇溶液(V/V=1∶3)中,PAN的接枝效率为83%,淀粉的接枝效率为72%,产品的吸水倍数为820g/g。  相似文献   

6.
聚丙烯酸(钾)/凹凸棒吸水剂的制备及性能研究   总被引:10,自引:0,他引:10  
在凹凸棒存在的情况下,以丙烯酸为单体,以N,N-亚甲基双丙烯酰胺(MBA)为交联剂,过硫酸钾(KPS)为引发剂,采用水溶液聚合法合成了聚丙烯酸(钾)/凹凸棒吸水剂。用TGA和SEM对产物进行了表征。IR分析证实了凹凸棒与丙烯酸发生了接枝共聚反应。研究了引发剂的用量、交联剂的用量和粘土的用量等反应条件对复合吸水剂吸水性的影响。当凹凸棒w=0.10时,复合吸水材料在蒸馏水和生理盐水中的吸水倍数分别大于1200和100。  相似文献   

7.
分别以抗坏血酸、甲酸、亚硫酸氢钠、异丙醇为链转移剂,研究了不同的链转移剂对淀粉―丙烯酸―丙烯酰胺(ST-AA-AM)吸水剂吸水性能的影响。实验结果表明:异丙醇、甲酸、亚硫酸氢钠、抗坏血酸用量分别为单体总质量的0.0375%、0.045%、0.075%、0.01%时,吸水率分别为498.1 g/g、347.9 g/g、549.0 g/g、407.7 g/g。将链转移剂进行复配,亚硫酸氢钠与异丙醇复配的效果最佳,当复合链转移剂用量占单体总质量的0.08%,异丙醇/亚硫酸氢钠(质量比)=1∶2时,吸水剂的吸水率最高,为653.5 g/g。  相似文献   

8.
丙烯酰胺与玉米淀粉接枝共聚物的合成及其吸水性能研究   总被引:2,自引:0,他引:2  
本文以硝酸铵为引发剂N,N-亚甲基双丙烯酰胺为交联剂,将丙烯酸胺与玉米淀粉接枝共聚合成了吸水剂。实验表明,当脱水葡萄糖单元与丙烯酰胺摩尔比为1:4,交联度为0.2%时,其吸水率最高可达18g/g,其对1%食盐水的吸收率为其吸水率的90%左右。然后,将以上吸水树脂以10%NaOH于60℃水解3h,制备了另一种吸水剂,吸水率约提高了16倍,但其吸1%食盐水的能力只有其吸水能力的10%左右。  相似文献   

9.
速溶型高吸水性树脂的制备及性能研究   总被引:2,自引:0,他引:2  
以丙烯酸为单体,K_2S_2O_8为引发剂,N,N’-亚甲基双内烯酰胺为交联剂,进行反相乳液聚合,制得内交联高吸水性树脂。研究了聚合物吸水性能与内烯酸浓度,丙烯酸中和度,引发剂用量,交联剂用过的关系。考察了该树脂的吸水速率,保水性,在不同电解质溶液中的吸水速度及水饱和树脂在盐水中的失水率。  相似文献   

10.
PAAM高吸水树脂反相悬浮聚合   总被引:1,自引:0,他引:1  
采用反相悬浮聚合法,通过部分中和丙烯酸与丙烯酰胺共聚制备了聚(丙烯酸-丙烯酰胺)(PAAM)高吸水树脂,讨论了聚合过程主要影响因素对其吸液性能的影响,并对其进行了FTIR、TGA测试,得到最佳的合成工艺配方:单体质量浓度为30%,中和度N为75%,丙烯酸与丙烯酰胺的摩尔比为7∶3,交联剂、引发剂和分散剂质量浓度分别为0.065%、0.7%和0.5%(相对于单体总质量),单体溶液的滴加速度为2~3mL/min,聚合温度和时间分别为70℃和1.5h。此时在蒸馏水、0.9%NaCl溶液%(wt)中最大吸水倍率分别为Qw=1300g/g、Qs=93g/g(Qw为蒸馏水中吸水倍率,Qs为0.9%NaCl溶液中的吸水倍率,下同),树脂在320℃之前都是比较稳定的,可以适应较高的使用温度。  相似文献   

11.
Synthesis and properties of clay-based superabsorbent composite   总被引:2,自引:0,他引:2  
A novel superabsorbent composites based on acrylic acid, acrylamide, and inorganic clay mineral-attapulgite were synthesized through a solution polymerization to improve water and saline absorbencies. The superabsorbent composite was characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The effects of saline solutions, amount of initiator, crosslinker and attapulgite on the water absorbency of superabsorbent composites were investigated. The water retention test of superabsorbent composites were also carried out. The superabsorbent composite exhibited improved water and saline absorbencies compared with that of crosslinked poly(acrylic acid-co-acrylamide) superabsorbent polymer. The water absorbency of the superabsorbent composite synthesized under optimal synthesis conditions with an attapulgite content of 10% reaches more than 1400 g H2O/g and 110 g H2O/g in distilled water and 0.9% NaCl solution, respectively.  相似文献   

12.
丙烯酸与丙烯酰胺共聚制备高吸水性树脂   总被引:3,自引:0,他引:3  
采用溶液聚合法,以N,N’-亚甲基双丙烯酰胺(NMBA)为交联剂,过硫酸钾(KPS)为引发剂合成了高吸水性树脂聚(丙烯酸-丙烯酰胺)(P(AA—AM)),研究了单体配比、丙烯酸中和度、引发剂及交联剂用量、反应温度对树脂在去离子水和0.9%盐水中吸水率的影响.最佳条件下制备的树脂在去离子水中吸水率为750g·g^-1,在0.9%盐水中吸水率为85g·g^-1.  相似文献   

13.
Utilization of raw materials available in nature and their application to derive other useful products without any adverse impact on the environment has long been a desired goal. In this work, guar gum (GG) and attapulgite (APT) clay were used as raw materials for preparing guar gum‐g‐poly(acrylic acid)/attapulgite (GG‐g‐PAA/APT) superabsorbent composites through the graft copolymerization of GG, partially neutralized acrylic acid (AA) and APT in aqueous solution. The effects of reaction conditions such as concentrations of the initiator and crosslinker, APT content, etc. on water absorbency were investigated. The composite prepared under optimal conditions gave the best absorption of 529 g/g sample in distilled water and 61 g/g sample in 0.9 wt% NaCl solution. Swelling behaviors revealed that the superabsorbent composites retained a high water absorbency over a wide pH range of 4–11, and the developed composites also exhibited improved reswelling and water‐retention capabilities. The superabsorbent composites can be utilized as eco‐friendly water‐manageable materials for agricultural and horticultural applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Starch-g-poly (AM-AMPS)/illite superabsorbent nanocomposite was synthesized by grafting copolymerization reaction of starch, acrylamide(AM) and 2-acrylamido-2- methyl propane sulfonic acid (APMS) in the presence of illite micropowder in deionized aqueous solution. The influence factors on water absorbency of the superabsorbent nanocoposite was optimized by single factor experiment. The synthesized superabsorbent nanocomposite exhibited the maximum water absorbency of 1320?g H2O/g in deionized water and 142?g H2O/g in 0.9?wt% sodium chloride (NaCl) solution. FTIR spectra confirmed that the grafting copolymerization between -OH groups on starch and monomers generated during the reaction. XRD analysis confirmed that crystal interlayer of illite was pulled open to 3.61?nm. TEM showed that illite slice layer randomly dispersed in the matrix of superabsorbent nanocomposite. The superabsorbent nanocomposite had a better thermal stability the corresponding superabsorbent material without illite by TGA and DSC analysis. The superabsorbent nanocomposite with excellent water absorbency and water retention could be especially useful in industry, agricultural, horticultural applications.  相似文献   

15.
A novel poly(acrylic acid)/sodium humate superabsorbent composite was synthesized by aqueous solution polymerization of acrylic acid using N, N′‐methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator in the presence of sodium humate. The effects on water absorbency such as initial monomer concentration, degree of neutralization of acrylic acid, amount of crosslinker, initiator and sodium humate, etc. were investigated. The water absorbency of the superabsorbent composite synthesized under optimal synthesis conditions with a sodium humate content of 20% exhibited an absorption of 1268 g H2O/g sample and 93 g H2O/g sample in distilled water and in 0.9 wt% NaCl solution, respectively. Swelling rate and water retention tests were also carried out. The results show that sodium humate, as a kind of functional filler, can enhance comprehensive properties of superabsorbent composite and reduce the product cost significantly. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Starch and sodium humate were utilized as raw material for synthesizing starch‐g‐poly(acrylic acid)/sodium humate (St‐g‐PAA/SH) superabsorbent by graft copolymerization reaction of starch (St) and acrylic acid (AA) in the presence of sodium humate (SH) in aqueous solution. The effect of weight ratio of AA to St, initial monomer concentration, neutralization degree of AA, amount of crosslinker, initiator and SH on water absorbency of the superabsorbent were studied. The swelling rate and swelling behavior in NaCl solution as well as reswelling ability of the superabsorbent were systematically investigated. The results showed that the superabsorbent synthesized under optimal conditions with SH content of 7.7 wt% and St content of 11.5 wt% exhibits water absorbency of 1100 g/g in distilled water and 86 g/g in 0.9 wt% NaCl solution, respectively. Introducing SH into the St‐g‐PAA polymeric network can improved the swelling rate and reswelling capability of the superabsorbent. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
A novel kind of superabsorbent composite, polyacrylamide/organo-attapulgite, from acrylamide (AM) and attapulgite (APT) was prepared by aqueous polymerization, using N,N′-methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator. APT was organified with five different degree of hexadecyltrimethyl ammonium bromide (HDTMABr), and the organification degree of APT was proved by FTIR, TGA and XRD. The effects of organification degree of APT on water absorbency and swelling rate of the superabsorbent composite in distilled water and in various saline solutions were investigated in this study. The effect of organification degree on reswelling ability of the superabsorbent composites was also investigated. The results indicate that the organification degree of APT had remarkable influence on swelling behaviors of the superabsorbent composites. The superabsorbent composite acquired its highest water absorbency when the organification degree of APT is 8.02 wt.%.  相似文献   

18.
海藻酸钠与丙烯酰胺微波共聚制备高吸水树脂   总被引:5,自引:0,他引:5  
高吸水性树脂是近年来得到迅速发展的一类新型的功能性高分子材料,由于其能吸收自身质量数百倍至数千倍的水,且具有优良的保水性能,因此被广泛应用于农业、林业、卫生用品材料、工业用脱水剂,医用材料、水凝胶材料等。反相悬浮聚合法是目前制备高吸水性树脂较先进的方法,具有制备工艺简单,树脂的物理形态和吸水性能较好等优点。海藻酸钠是从褐藻中提取得到,由于其良好的生物降解性和生物相容性,  相似文献   

19.
A novel multifunctional superabsorbent composite from acrylic acid (AA), acrylamide (AM), sodium humate (SH) and organo‐attapulgite (organo‐APT), PAA‐AM/SH/organo‐APT, was synthesized by aqueous solution polymerization, using N,N′‐methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator. The organification of APT with hexadecyltrimethyl ammonium bromide (HDTMABr) was proved by FT‐IR. The effects of organo‐APT (HDTMA‐APT) content in the superabsorbent composite and organification degree of it on water absorbency of the superabsorbent composite were studied. The effects of incorporated HDTMA‐APT on swelling rate, water absorbency in various saline solutions and reswelling capability of the superabsorbent composite were also investigated. The results indicate that organification of APT had a remarkable influence on swelling behaviors of the superabsorbent composites. Comparing with the composite doped with APT, water absorbency for the composite incorporated with 10 wt% HDTMA‐APT was enhanced from 996 to 1282 g g?1 in distilled water and from 63 to 68 g g?1 in 0.9 wt% NaCl solution, respectively. The superabsorbent composite acquired its highest water absorbency when the organification degree of APT was 8.02 wt%. Water absorbency of the composites in various saline solutions decreased with the increasing concentration, especially for the multivalent cations. In addition, swelling rate and reswelling capability of the superabsorbent composite were also improved by introducing HDTMA‐APT into the composite compared with that of incorporating APT. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Amphoteric superabsorbent composite with semi-interpenetrating polymer networks (semi-IPN) composed of poly(acrylic acid) (PAA)/Ca-bentonite/poly(dimethyldiallylammonium chloride) (PDMDAAC) was prepared by a combination of intercalative polymerization and a sequential IPN method and the effects of reaction parameters on the swelling capacity were studied. PDMDAAC was used as a polycation to modify bentonite and form semi-IPN with lightly crosslinked PAA. FTIR and TG were used to characterize the amphoteric superabsorbent composites with semi-IPN. The thermal stability of the product was not degraded as in the case of using small molecular surfactant to modify bentonite. The contents of carboxylic groups and nitrogen had been determined. This indicated that the product with certain content of carboxylic groups and nitrogen is inclined to exhibit excellent swelling capacity. The presence of PDMDAAC improved the swelling capacity. The resulting amphoteric superabsorbent composite showed excellent swelling capacity of 1578 g/g in distilled water and 136 g/g in 0.9 wt% NaCl solution. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号