首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A series of novel poly(acrylic acid)/coco peat (PAA/CP) superabsorbent composites were prepared via the ultraviolet irradiation copolymerization of acrylic acid monomer (PAA) and coco peat cellulose (CP) in the presence of the cross‐linker trimethylolpropane trimaleate. The physico‐chemical structures of obtained PAA/CP were characterized by Fourier transform infrared spectroscopy, thermogravimetry/derivative thermogravimetry, X‐ray diffraction, and scanning electron microscopy, respectively. The critical parameters of affecting the water absorbency of PAA/CP, including the cross‐linker level, amount of CP and reaction time, were studied in detailed. The experimental results showed that the PAA/CP samples exhibited the maximum swelling value of 523.09 g/g in distilled water and 40.52 g/g in 0.9 wt % NaCl solution. The swelling behaviors of PAA/CP were significantly relied on the concentration of salt solution and the pH of external solution. The effect of ions species on the swelling performance was in the order: Na+ > Ca2+ > Fe3+ , and in pH 2.2 and 7.2 aqueous solutions PAA/CP composites displayed better pH‐responsiveness and reversible on‐off switching characteristics. Urea, as an agrochemical model, was loaded into PAA/CP substrate to supply with nitrogen nutrient. The test of their loading and releasing diffusion performance of urea suggested that the urea loading percentage of PAA/CP was remarkably dependent on the concentration of aqueous urea solutions and the release of urea from loaded PAA/CP samples in water followed a non‐Fickian mechanism. Owing to their considerable good water absorption capacity, slow urea release, economical and environment‐friendly merits, PAA/CP composites could be exploited for the agriculture applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
A novel multifunctional superabsorbent composite from acrylic acid (AA), acrylamide (AM), sodium humate (SH) and organo‐attapulgite (organo‐APT), PAA‐AM/SH/organo‐APT, was synthesized by aqueous solution polymerization, using N,N′‐methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator. The organification of APT with hexadecyltrimethyl ammonium bromide (HDTMABr) was proved by FT‐IR. The effects of organo‐APT (HDTMA‐APT) content in the superabsorbent composite and organification degree of it on water absorbency of the superabsorbent composite were studied. The effects of incorporated HDTMA‐APT on swelling rate, water absorbency in various saline solutions and reswelling capability of the superabsorbent composite were also investigated. The results indicate that organification of APT had a remarkable influence on swelling behaviors of the superabsorbent composites. Comparing with the composite doped with APT, water absorbency for the composite incorporated with 10 wt% HDTMA‐APT was enhanced from 996 to 1282 g g?1 in distilled water and from 63 to 68 g g?1 in 0.9 wt% NaCl solution, respectively. The superabsorbent composite acquired its highest water absorbency when the organification degree of APT was 8.02 wt%. Water absorbency of the composites in various saline solutions decreased with the increasing concentration, especially for the multivalent cations. In addition, swelling rate and reswelling capability of the superabsorbent composite were also improved by introducing HDTMA‐APT into the composite compared with that of incorporating APT. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Starch and sodium humate were utilized as raw material for synthesizing starch‐g‐poly(acrylic acid)/sodium humate (St‐g‐PAA/SH) superabsorbent by graft copolymerization reaction of starch (St) and acrylic acid (AA) in the presence of sodium humate (SH) in aqueous solution. The effect of weight ratio of AA to St, initial monomer concentration, neutralization degree of AA, amount of crosslinker, initiator and SH on water absorbency of the superabsorbent were studied. The swelling rate and swelling behavior in NaCl solution as well as reswelling ability of the superabsorbent were systematically investigated. The results showed that the superabsorbent synthesized under optimal conditions with SH content of 7.7 wt% and St content of 11.5 wt% exhibits water absorbency of 1100 g/g in distilled water and 86 g/g in 0.9 wt% NaCl solution, respectively. Introducing SH into the St‐g‐PAA polymeric network can improved the swelling rate and reswelling capability of the superabsorbent. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A series of granulated semi‐interpenetrating polymer network (semi‐IPN) superabsorbent hydrogels composed of chitosan‐g‐poly(acrylic acid) (CTS‐g‐PAA) and poly(vinyl alcohol) (PVA) were prepared by solution polymerization using ammonium persulfate (APS) as an initiator and N,N′‐methylenebisacrylamide (MBA) as a crosslinker. The effects of reaction conditions such as the concentration of MBA, the weight ratio of AA to CTS, and the content of PVA on water absorbency were investigated. Infrared (IR) spectra and differential scanning calorimetry (DSC) analyses confirmed that AA had been grafted onto CTS backbone, and PVA semi‐interpenetrating into CTS‐g‐PAA networks. SEM analyses indicated that CTS‐g‐PAA/PVA has improved porous surface and PVA was uniformly dispersed in CTS‐g‐PAA network. The semi‐IPN hydrogel containing 10 wt% PVA shows the highest water absorbency of 353 and 53 g g?1 in distilled water and 0.9 wt% NaCl solution, respectively. Swelling behaviors revealed that the introduction of PVA could improve the swelling rate and enhance the pH stability of the superabsorbent hydrogel. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
肖谷清  王姣亮  龙立平  蔡玲 《应用化学》2010,27(12):1451-1456
采用分步悬浮聚合法制备了聚二乙烯基苯/聚丙烯酸甲酯(PDVB/PMA)大孔互穿聚合物网络,将其中的聚丙烯酸甲酯转化为聚丙烯酸,得到具有疏水/亲水性能的聚二乙烯基苯/聚丙烯酸(PDVB/PAA)大孔互穿聚合物网络(IPN),研究了这类疏水/亲水大孔PDVB/PAA IPN对苯胺的吸附热力学和吸附动力学,测定了该树脂的孔结构、含水量、弱酸交换量和溶胀性能;测定了该树脂对苯胺在不同温度下的吸附等温线,利用热力学函数关系计算了吸附焓、自由能和熵。 红外光谱显示,成功合成了疏水/亲水PDVB/PAA IPN,与PDVB、PDVB/PMA IPN树脂相比,其BET表面积以及孔容均减小,含水量为62.73%,弱酸交换量为1.91 mmol/g;对苯胺的吸附为放热、自发的过程;溶胀实验、静态解吸实验表明,PDVB/PAA IPN树脂中疏水性的PDVB网具有疏水作用吸附能力,亲水性的PAA网具有氢键作用吸附能力。 对苯胺的吸附在90 min时即可达到吸附平衡,树脂吸附苯胺符合一级速率方程,吸附速率主要受颗粒内扩散的控制,同时还受液膜扩散的影响,吸附动力学可采用HSDM模型描述。  相似文献   

6.
A very simple yet novel strategy to significantly enhance the mechanical properties of hydrogels is reported. Poly(acrylic acid) (PAA) hydrogels with aligned macroporous channels are immersed in the aqueous solutions of poly(dimethyl diallyl ammonium chloride) (PDMDAAC). Strong electrostatic interactions are formed between the anionic PAA and cationic PDMDAAC chains. In the resultant PAA/PDMDAAC hybrid hydrogels, the mass ratio of PDMDAAC to PAA is about 0.2 and PDMDAAC is uniformly distributed throughout the gels. The mechanical properties of the formed hybrid hydrogels are largely enhanced in comparison with the original PAA hydrogels. The hybrid hydrogels exhibit high tensile strengths (0.38–1.73 MPa), elastic moduli (0.21–1.59 MPa) and toughness (up to 3.0 MJ/m3), about several to more than 10 times those of the corresponding PAA hydrogels. In addition, the PAA/PDMDAAC hydrogels also show excellent and very rapid shape recovery ability in both air and deionized water. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2432–2441  相似文献   

7.
A novel poly(acrylic acid)/sodium humate superabsorbent composite was synthesized by aqueous solution polymerization of acrylic acid using N, N′‐methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator in the presence of sodium humate. The effects on water absorbency such as initial monomer concentration, degree of neutralization of acrylic acid, amount of crosslinker, initiator and sodium humate, etc. were investigated. The water absorbency of the superabsorbent composite synthesized under optimal synthesis conditions with a sodium humate content of 20% exhibited an absorption of 1268 g H2O/g sample and 93 g H2O/g sample in distilled water and in 0.9 wt% NaCl solution, respectively. Swelling rate and water retention tests were also carried out. The results show that sodium humate, as a kind of functional filler, can enhance comprehensive properties of superabsorbent composite and reduce the product cost significantly. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
The morphology and miscibility of semi-interpenetrating polymer networks (semi-IPN) prepared with poly(styrene-co-methacrylic acid) [P(S-co-MAA)] of different carboxylic acid contents and poly(epsilon-caprolactone) (PCL) have been studied by ESR spin-label method. The ESR spectra of spin-labeled PCL showed one motional component at any specific temperature. It indicated that the spin-labeled molecules were located in one type of environment. The coexistence of two motional components in the ESR spectra of all semi-IPN samples was observed over a certain temperature range. This phenomenon suggested that the semi-IPNs were not compatible systems; they contained two microphases, a PCL-rich microdomain and a P(S-co-MAA)-rich microdomain. The miscibility could be improved by increasing the carboxylic acid content, which could enhance the hydrogen-bonding interactions between the ester groups of PCL and carboxylic acid groups in P(S-co-MAA). It was also found that the intracomponent cross-linking of the semi-IPNs was not in favor of the miscibility. The microphase separation occurred in all semi-IPNs, even in the samples having strong hydrogen-bonding interactions. With increasing cross-linking density, the microphase separation became more remarkable.  相似文献   

9.
Fe3O4/chitosan/poly(acrylic acid) (Fe3O4/CS/PAA) composite particles, which are reusable, biodegradable and of high adsorption capacity, have been prepared through polymerizing acrylic acid in chitosan and Fe3O4 nanoparticles aqueous solution. By varying in-feed mole ratio of carboxyl to amino group (nc/na) and reactant concentration, the average diameter of Fe3O4/CS/PAA composite particles can be controlled to vary from 100 to 300 nm. FT-IR, XRD and TEM were used to characterize Fe3O4/CS/PAA composite particles. Results showed that Fe3O4 was indeed incorporated into CS/PAA particles. The composite particles showed high efficient to remove copper ions (II) in aqueous solution. Adsorption kinetic studies showed that the adsorption process followed a pseudo-second-order kinetic model and the equilibrium data agreed well with the Langmuir model. The saturated adsorption capacity obtained from the experimental was 193 mg/g in close to proximity to the data 200 mg/g calculated from Langmuir model. The saturated adsorption capacity still retained 100 mg/g after three cycles of adsorption–desorption of copper ions (II).  相似文献   

10.
采用反相悬浮聚合法合成了3种聚丙烯酸系列吸水树脂:聚丙烯酸钠(PAA)、丙烯酸-丙烯酰胺共聚物(P(AA/AM))和丙烯酸-马来酸酐共聚物(P(AA/MA))。 对3种树脂的吸水性、保水性、耐候性和耐电解质等性能进行测试比较。 结果表明,P(AA/MA)的吸水性能最优异,10 min内吸蒸馏水量可达3578.4 g/g;在一定的温度或压力范围内,3种树脂均有良好的保水性能,在不同温度下储存均能保持各自的吸水性;P(AA/MA)的耐电解质性能较为突出,吸生理盐水量可达107.2 g/g,其综合性能最好。  相似文献   

11.
Summary: Semi-interpenetrating hydrogels (SIHs) of polyelectrolytes consisting of poly(acrylamide) hydrogel (PAAH) as matrix and sodium poly(styrenesulfonate) (NaPSS), poly(N,N′-dimethyl-N,N′-diallylammonium chloride) (PDMDAAC), stoichiometric interpolyelectrolyte complex of NaPSS-PDMDAAC, and linear polyethyleneimine-metal complexes (PMC) as well as polymer-protected palladium nanoparticles were prepared by in situ polymerization, e.g. crosslinked acrylamide chains were formed in aqueous solutions of NaPSS, PDMDAAC, NaPSS-PDMDAAC (1:1 mol/mol), PMC and palladium nanoparticles protected by poly(N-vinylpyrrolidone) (PVP), poly-(vinyl alcohol) (PVA), poly(acrylic acid) (PAA), and linear poly(ethyleneimine) (LPEI) respectively in the presence of N,N′-methylenebisacrylamide. For each system the equilibrium swelling degree α and the parameters n and k describing the mechanism of water transport into SIHs volume was determined. Catalytic properties of SIHs were studied in allyl alcohol hydrogenation and cyclohexane oxidation reactions.  相似文献   

12.
A novel biopolymer-based hydrogel composite was synthesized through chemical crosslinking by graft copolymerization of partially neutralized acrylic acid onto the hydrolyzed collagen. The Taguchi method, a robust experimental design, was employed for the optimization of the synthesis based on the swelling capacity of the hydrogels. This method was applied for the experiments and standard L16 orthogonal array with five factors and four levels. In the synthesis of the composite superabsorbent, N,N′-methylene bisacrylamide (MBA) as crosslinker, ammonium persulfate (APS) as initiator, acrylic acid (AA) as monomer, neutralization percent (NU), and collagen/kaolin weight ratio were used as important factors. From the analysis of variance of the test results, the most effective factor controlling equilibrium swelling capacity was obtained and maximum water absorbency of the optimized final product was found to be 674 g/g. The surface morphology of the gel was examined using scanning electron microscopy. Furthermore in this research, swollen gel strength of composite SAPs already swollen under realistic conditions (saline solution absorbency under load) was determined.  相似文献   

13.
A semi-interpenetrating polymer network (semi-IPN) based on poly(dimethylsiloxane) and poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) was prepared. The material obtained was characterized by infrared spectrometry, differential scanning calorimetry, thermogravimetric analysis and scanning electronic microscopy. The results indicated the presence of PDMAEMA into the semi-IPNs. Only the network with the highest amount of crosslinker [(3-chloropropyl)trimethoxysilane] was stable in water. To evaluate the hydrophilic/hydrophobic character of the obtained material, swelling measurements were performed for the stable network in water and in toluene. The semi-IPN was able to adsorb about 34 % in mass of water, indicating that an appropriate hydrophylic/hydrophobic balance was obtained. That behavior is desirable since the material was designed for metal adsorption from aqueous medium, without a lost in the ability to swell in less polar solvents.  相似文献   

14.
A novel poly(acrylic acid)‐iron rich smectite (IRS) superabsorbent composite was synthesized by graft copolymerization reaction of acrylic acid (AA) in the presence of N,N‐methylenebisacrylamide (MBA) as a crosslinker. IRS was used to strengthen the hydrogel products in the polymerization process. Water absorbencies for these superabsorbent composites in water and saline solutions were investigated. IRS caused a reduced equilibrium swelling as low as 8–26%. However, grafted IRS particles resulted in improved gel strength as high as 66% compared to the IRS‐free sample. IRS modified superabsorbent hydrogel composites exhibited higher thermal stability compared to the IRS‐free sample. The pH dependent reversible swelling behavior of hydrogels was also investigated. It is found that the swelling process is pH dependent and reversible for synthesized superabsorbent. Superabsorbent hydrogel composites were characterized by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). FTIR spectroscopy was confirmed grafting of acrylic chains onto the surface of IRS particles. From the standpoint of these results, these strengthened and thermostabilized hydrogels may be considered as good candidates for a controlled release study and agricultural applications. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
在活性炭(Ac)存在的情况下通过自由基溶液聚合,以过硫酸铵为引发剂,N,N′-亚甲基双丙烯酰胺为交联剂,制备了活性炭复合聚丙烯酸凝胶(PAA/AC)。 考察了凝胶在蒸馏水、生理盐水和不同pH值缓冲溶液中的平衡溶胀比以及溶胀动力学,结果表明,活性炭能有效提高凝胶的平衡溶胀比,在实验设计的pH值范围内复合凝胶具有比PAA凝胶更高的平衡溶胀比,蒸馏水和生理盐水中PAA/AC凝胶的平衡溶胀比分别可达到303和60 g/g,约为PAA凝胶的2.4倍。 讨论了凝胶的溶胀机理,结果表明,活性炭成分的介入破坏了聚合物链段之间的聚集态结构,减弱了聚合物链段之间的相互作用,提高了凝胶的溶胀能力。 示差扫描量热仪测定复合前后凝胶的玻璃化转变温度,扫描电子显微镜观察了复合前后凝胶的断面网络结构,结果进一步表明活性炭复合后聚合物链段之间的作用力减弱。  相似文献   

16.
A novel diatomite composite superabsorbent was synthesized by solution polymerization of partially neutralized acrylic acid and diatomite, using N,N′-methylenebisacrylamide as a crosslinking agent and hydrogen peroxide and L -ascorbic acid as a redox initial system. The influences of some reaction conditions, such as diatomite content, neutralization degree of acrylic acid, amount of initiator, amount of crosslinking agent, monomer concentration, and the reaction temperature on swelling characteristic were investigated. The water absorbency of the sample prepared at optimum conditions was 99 g/g in 0.9 wt% NaCl solution. The results of swelling rate measurement showed that diatomite composite superabsorbent had better swelling rate than that of poly(sodium acrylate) prepared in the same conditions. Other properties, i.e. water retention, reswelling ability and resistance to salt, were also examined. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The osmotic pressure of weakly charged aqueous poly(acrylic acid) (PAA) solutions and the swelling pressure PAA gels were studied by osmotic deswelling at different degrees of ionization (α). In solution, the osmotic pressure was found to scale linearly with concentration, whereas the scaling power of the swelling pressure of gels was higher (1.66). The effect of the ionization degree on the osmotic coefficient in PAA solutions was in agreement with the theory of Borue and Erukhimovich [Macromolecules, 21 , 3240 (1988)]. Ionization increases the swelling capacity of the PAA gels until a plateau is reached at about 35% neutralization. The concentration at equilibrium swelling scales as Ce ~ α?0.6. The contribution of the network to the gel swelling pressure is evaluated by subtracting the osmotic pressure of the polymer solution at the same concentration and degree of ionization. In swollen gels the extended network opposes swelling. As the gel is osmotically deswelled, a state of zero network pressure exists at a certain concentration, below which the network elasticity favors swelling. The crossover concentration shifts to lower values as the degrees of ionization increases. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Biodegradable and biocompatible amphoteric poly(amido-amine) (PAA)-based hydrogels, containing carboxyl groups along with amino groups in their repeating unit, were considered as scaffolds for tissue engineering applications. These hydrogels were obtained by co-polymerising 2,2-bisacrylamidoacetic acid with 2-methylpiperazine with or without the addition of different mono-acrylamides as modifiers, and in the presence of primary bis-amines as crosslinking agents. Hybrid PAA/albumin hydrogels were also prepared. The polymerisation reaction was a Michael-type polyaddition carried out in aqueous media. The PAA hydrogels were soft and swellable materials. Cytotoxicity tests were carried out by the direct contact method with fibroblast cell lines on the hydrogels both in their native state (that is, as free bases) and as salts with acids of different strength, namely hydrochloric, sulfuric, acetic and lactic acid. This was done in order to ascertain whether counterion-specific differences in cytotoxicity existed. It was found that all the amphoteric PAA hydrogels considered were cytobiocompatible both as free bases and salts. Selected hydrogels samples underwent degradation tests under controlled conditions simulating biological environments, i.e. Dulbecco medium at pH 7.4 and 37 degrees C. All samples degraded completely and dissolved within 10 d, with the exception of hybrid PAA/albumin hydrogels that did not dissolve even after eight months. The degradation products of all samples turned to be non-cytotoxic. All these results led us to conclude that PAA-based hydrogels have a definite potential as degradable matrices for biomedical applications.  相似文献   

19.
将线性聚(N-异丙基丙烯酰胺)(PNIPAAm)和海藻酸钠(SA)分子同时引入到PNIPAAm凝胶中,制备了交联聚(N-异丙基丙烯酰胺)/(海藻酸钠/聚(N-异丙基丙烯酰胺))半互穿网络(Cr-PNIPAAm/(SA/PNIPAAm)semi-IPN)水凝胶。在弱碱性条件下(pH=7.4),改变SA与线性PNIPAAm的质量比对Cr-PNIPAAm/(SA/PNIPAAm)semi-IPN水凝胶的溶胀度没有太大的影响。在酸性条件下(pH=1.0),其溶胀度随着SA与线性PNIPAAm质量比的减小而增大。由于亲水性SA与线性PNIPAAm的协同作用,Cr-PNIPAAm/(SA/PNIPAAm)semi-IPN水凝胶的消溶胀速率得到很大提高。  相似文献   

20.
An interpolymer complex was prepared by mixing aqueous solutions of poly(ethylene oxide) (PEO) and of a poly(carboxylic acid), i.e., poly(acrylic acid)(PAA), poly(methacrylic acid)(PMAA), or styrene-maleic acid copolymer(PSMA). The complexation mechanism was discussed on the basis of results of such experimental methods as viscosity, potentiometric titration, and turbidimetry. The hydrogen bond is primarily involved in these complexations, but the influence of hydrophobic interaction on complexation can not be ignored. If the degree of dissociation α of carboxylic acid or the degree of polymerization Pn of PEO was perceptibly changed, a stable complex was obtained at about α 0.1 or Pn (PEO) = 40 for PMAA, 200 for PAA. This fact indicates that more than a definite number of binding sites are necessary for a stable interpolymer complex to be formed and that cooperative interaction among active sites plays an important role in complex formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号