首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
The two title compounds, potassium diaquacobalt(II) borodiphosphate 0.48‐hydrate and potassium–calcium(0.172/0.418) diaquacobalt(II) borodiphosphate monohydrate, were synthesized hydrothermally. They are new members of the borophosphate family characterized by [BP2O8]3− helices running along [001] and constructed of boron (Wyckoff position 6b, twofold axis) and phosphorus tetrahedra. The [CoBP2O8] anionic frameworks in the two materials are structurally similar and result from a connection in the ab plane between the CoO4(H2O)2 coordination octahedra (6b position) and the helical ribbons. Nevertheless, the two structures differ in the disorder schemes of the K,Ca and H2O species. The alkali cations in the structure of the pure potassium compound are disordered over three independent positions, one of them located on a 6b site. Its framework is characterized by double occupation of the tunnels by water molecules located on twofold rotation axes (6b) and a fraction of alkali cations; its cell parameters, compared with those for the mixed K,Ca compound, show abnormal changes, presumably due to the disorder. For the K,Ca compound, the K and Ca cations are on twofold axes (6b) and the channels are occupied only by disordered solvent water molecules. This shows that it is possible, due to the flexibility of the helices, to replace the alkali and alkaline earth cations while retaining the crystal framework.  相似文献   

5.
Synthesis and Crystal Structure of Cs8P8O24 · 8H2O Cs8P8O24 · 8H2O was obtained from Na8P8O24 · 6H2O by cation exchange. Crystal growth was achieved by applying gel techniques (agar agar). The crystal structure (P1 ; a = 766.6(8); b = 1 156.9(9); c = 1 163.4(9) pm; α = 100,2(1)°; β = 106.5(2)°; γ = 92.2(1)°; Z = 1; 4 099 unique diffractometer data; R = 0.051; R(w) = 0.037) contains cyclo-octaphosphate anions with point symmetry C2h. The cesium atoms are coordinated irregularily by eight and ten oxygen atoms, respectively. The threedimensional linkage of the P8O248?-rings is established via bonds to cesium atoms and hydrogen bonds Provided by H2O molecules.  相似文献   

6.
The title compound, namely octa­aqua­ytterbium(III) aqua­nona­chloro­tricadmate(II) hexa­hydrate, [Yb(H2O)8][Cd3Cl9(H2O)]·6H2O, was prepared by evaporation at 278 K from an aqueous solution of the ternary system YbCl3–CdCl2–H2O and was characterized by elemental chemical analysis and by X‐ray powder and single‐crystal diffraction studies. The crystal structure can be viewed as being built from layers of double chains of CdCl6 and CdCl5(H2O) octahedra separated by antiprismatic [Yb(H2O)8]3+ cations. The stabilization of the structure is ensured by O—H⋯O and O—H⋯Cl hydrogen bonds. A comparison with the structures of SrCd2Cl6·8H2O and CeCd4Cl11·13H2O is presented.  相似文献   

7.
Abstract

The crystal structure of LiZn2P3O10 8H2O has been determined from three-dimensional X-ray diffraction data collected on dicolet R3 four-circle diffractometer with CuK-radiation. In the region from 20 up to 110° 2016 independent reflections were obtained. Single crystals suitable for X-ray investigation were grown by slow evaporation from the 0.1 mol solution of the composition Li5P3O10: Zn (NO3)2=1 : 1 at 278 K. The compound belongs to the triclinic space group P1 with cell parameters: a=10.305(1), b=10.505(1), c=8.671(1) Å, α=101.79(1), β=113.42(1), y=94.24(1)°, v=830.5 Å3, δcalc= =2.14 g/cm3, Z=2. The structure was solved by the heavy atom method. The positions of zinc atoms in the unit cell were determined from three-dimensional Patterson function. All other non-hydrogen atoms were located by successive Fourier synthesis. After the last refinement cycles using anisotropic thermal parameters the R value converged to R=0.042 and RW =0.050. The bonding of the triphosphate group to the zinc atoms in this structure is bidentate. Zinc atoms have three crystallographically different positions. The tetrahedral coordination two of them is completed by oxygen atoms from triphosphate groups. The third one is octohedrally coordinated by four oxygen atoms from P3O10 5- groups and by two oxygens from water molecules. The tetrahedron of lithium ion is completed by water molecules only. Bond lengths and angles within P3O10 5- group are not fundamentally different from those found in similar chain anions. Zn-0 distances range between 1.938 and 2.141 Å while Li-O distances-between 1.939 and 1.969 Å.  相似文献   

8.
9.
10.
IntroductionInthelastfewyearsthesearchfornewmaterialswithmicroporousandzeolite analogoussystemshasprimarilyfocusedonaluminumphosphatesandaluminosilicatecom poundssubstitutedwithavarietyofatoms .1 3 Cobalt sub stitutedaluminophosphatesaresystematicallystudiedmainlyduetotheirpotentialuseassolid acidcatalysts .Insuchmaterials ,theBr nstedacidsiteisgeneratedbyeachsubstitutionofAl(III)byCo(II)inwhichaprotonisneededtobalancethecharge .4 7Tofindnewtypeofze oliticmaterials ,theborophosphatemateri…  相似文献   

11.
12.
The syntheses, structures, and magnetic properties of two new Mn7 complexes containing phenylseleninate ligands are reported. [Mn7O8(O2SePh)8(O2CMe)(H2O)] (1) and [Mn7O8(O2SePh)9(H2O)] (2) were both prepared by the reaction of 18 equiv of benzeneseleninic acid (PhSeO2H) with [Mn12O12(O2CMe)16(H2O)4] in MeCN. Complex 1 x 6MeCN crystallizes in the triclinic space group P, and complex 2 x 2CH2Cl2 crystallizes in the monoclinic space group P2(1)/m. Both compounds possess an unprecedented [Mn7O8]9+ core comprising a central [MnIII3(micro3-O)4]+ unit attached to [MnIV2(micro-O)2]4+ and [MnIV2(micro-O)(micro3-O)]4+ units on either side. In each cluster, the PhSeO2- groups function as bridging ligands between adjacent Mn centers. The structure reveals strong Se.O intermolecular contacts between Mn7 units to give a one-dimensional chain structure, with weak interchain interactions. Solid-state DC magnetic susceptibility measurements of complexes 1 and 2 reveal that they have very similar properties, and detailed studies on 1 by AC susceptibility measurements confirm an S = 2 ground-state spin value. In addition, out-of-phase AC signals are observed, suggesting slow magnetization relaxation. Magnetization versus DC field sweeps down to 0.04 K reveals hysteresis loops, but the temperature dependence of the coercivity is not what is expected of a single-molecule magnet. Instead, the behavior is due to single-chain magnetism, albeit with weak antiferromagnetic interactions between the chains, with the barrier to relaxation arising from a combination of molecular anisotropy and ferromagnetic intermolecular exchange interactions mediated by the Se...O contacts. An Arrhenius plot was constructed from the magnetization versus time decay data. The thermally activated region at > 0.5 K gave an effective relaxation barrier (Ueff) of 14.2 K. Below approximately 0.1 K, the relaxation is independent of temperature, which is characteristic of magnetization quantum tunneling through the anisotropy barrier. These Mn7 compounds are thus the first single-chain magnets to comprise polynuclear metal clusters and also the first for which the temperature-independent relaxation characteristic of tunneling has been identified. The work also emphasizes that out-of-phase AC signals for ostensibly molecular compounds are not sufficient proof by themselves of a single-molecule magnet.  相似文献   

13.
14.
15.
Structural determinations of the magnesium(II) and barium(II) salts of pyromellitic acid (benzene‐1,2,4,5‐tetra­carboxyl­ic acid) are presented. Hexa­aqua­magnesium(II) benzene‐1,2,4,5‐tetra­carboxyl­ate(2−), [Mg(H2O)6](C10H4O8), (I), and penta­aqua­[benzene‐1,2,4,5‐tetra­carboxyl­ato(2−)]­barium(II), [Ba(C10H4O8)(H2O)5], (II), are both centrosymmetric and both possess a 1:1 metal–ligand ratio, but the two structures are found to differ in that the magnesium salt contains a hexaaqua cation and possesses only hydrogen‐bonding interactions between cations and anions, while the barium salt exhibits coordination of the carboxyl­ate ligand to the nine‐coordinate metal centre. In (I), both ions sit on a 2/m site symmetry, and in (II), the cation and anion are located on m and i site symmetries, respectively.  相似文献   

16.
采用熔融硼酸法合成了一种具有层状结构的新型水合稀土多硼酸盐, La[B5O8(OH)(H2O)]NO3•2H2O, 并利用单晶X射线衍射技术确定了它的结构. 它属于单斜晶系, P21/n空间群. 其基本构建单元 (fundamental building block, 简称FBB)是由三个BO4和两个BO3基团所构成的一个双三元环[B5O12]基团. 结构中每一个FBB通过共顶点氧原子与周围四个同样的单元连接成具有九元环窗口的二维[B5O10]层, La3+位于九元环中心附近. [B5O10]层沿着b方向进行堆积, 硝酸根离子和结构中部分结晶水分子位于相邻的[B5O10]层之间.  相似文献   

17.
18.
19.
20.
[Cd(H2O)3(C5H6O4)]·2H2O ( 1 ) and Cd(H2O)2(C6H8O4) ( 2 ) were prepared from reactions of fresh CdCO3 precipitate with aqueous solutions of glutaric acid and adipic acid, respectively, while Cd(H2O)2(C8H12O4) ( 3 ) crystallized in a filtrate obtained from the hydrothermal reaction of CdCl2·2.5H2O, suberic acid and H2O. Compound 1 consists of hydrogen bonded water molecules and linear {[Cd(H2O)3](C5H6O4)2/2} chains, which result from the pentagonal bipyramidally coordinated Cd atoms bridged by bis‐chelating glutarato ligands. In 2 and 3 , the six‐coordinate Cd atoms are bridged by bis‐chelating adipato and suberato ligands into zigzag chains according to {[Cd(H2O)3](C5H6O4)2/2} and {[Cd(H2O)2](C8H12O4)2/2}, respectively. The hydrogen bonds between water and the carboxylate oxygen atoms are responsible for the supramolecular assemblies of the zigzag chains into 3D networks. Crystallographic data: ( 1 ) P1¯ (no. 2), a = 8.012(1), b = 8.160(1), c = 8.939(1) Å, α = 82.29(1)°, β = 76.69(1)°, γ = 81.68(1)°, U = 559.6(1) Å3, Z = 2; ( 2 ) C2/c (no. 15), a = 16.495(1), b = 5.578(1), c = 11.073(1) Å, β = 95.48(1)°, U = 1014.2(1) Å3, Z = 4; ( 3 ) P2/c (no. 13), a = 9.407(2), b = 5.491(1), c = 11.317(2) Å, β = 95.93(3)°, U = 581.4(2) Å3, Z = 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号