首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title complexes, catena‐poly[[aqua(1,10‐phenanthroline‐κ2N,N′)­cobalt(II)]‐μ‐benzene‐1,4‐di­carboxyl­ato‐κ2O1:O4], [Co(C8H4O4)(C12H8N2)(H2O)], (I), and catena‐poly[[[(di‐2‐pyridyl‐κN‐amine)copper(II)]‐μ‐benzene‐1,4‐di­carboxyl­ato‐κ4O1,O1′:O4,O4′] hydrate], [Cu(C8H4O4)(C10H9N3)]·H2O, (II), take the form of zigzag chains, with the 1,4‐benzene­di­carboxyl­ate ion acting as an amphimonodentate ligand in (I) and a bis‐bidentate ligand in (II). The CoII ion in (I) is five‐coordinate and has a distorted trigonal–bipyramidal geometry. The CuII ion in (II) is in a very distorted octahedral 4+2 environment, with the octahedron elongated along the trans O—Cu—O bonds and with a trans O—Cu—O angle of only 137.22 (8)°.  相似文献   

2.
In catena‐poly­[[[tri­aqua­cadmium(II)]‐μ‐acetyl­enedi­carboxyl­ato‐κ4O,O′:O′′,O′′′] hydrate], {[Cd(C4O4)(H2O)3]·­H2O}n, the CdII atom is coordinated by two bidentate carboxyl­ate groups and three water mol­ecules, thus forming a sevenfold coordination polyhedron with all atoms located on general sites. These polyhedra are connected by the bifunctional acetyl­enedi­carboxyl­ate ligands, forming zigzag chains running parallel to [120]. Hydro­gen bonds, which involve the non‐coordinated water mol­ecule, connect these chains to form a three‐dimensional framework.  相似文献   

3.
Rubidium chromium(III) dioxalate dihydrate [di­aqua­bis(μ‐oxalato)­chromium(III)­rubidium(I)], [RbCr(C2O4)2(H2O)2], (I), and dicaesium magnesium dioxalate tetrahydrate [tetra­aqua­bis(μ‐oxalato)­magnesium(II)­dicaesium(I)], [Cs2Mg(C2­O4)2(H2O)4], (II), have layered structures which are new among double‐metal oxalates. In (I), the Rb and Cr atoms lie on sites with imposed 2/m symmetry and the unique water molecule lies on a mirror plane; in (II), the Mg atom lies on a twofold axis. The two non‐equivalent Cr and Mg atoms both show octahedral coordination, with a mean Cr—O distance of 1.966 Å and a mean Mg—O distance of 2.066 Å. Dirubid­ium copper(II) dioxalate dihydrate [di­aqua­bis(μ‐oxalato)­copper(II)­dirubidium(I)], [Rb2Cu(C2O4)2(H2O)2], (III), is also layered and is isotypic with the previously described K2‐ and (NH4)2CuII(C2O4)2·2H2O compounds. The two non‐equivalent Cu atoms lie on inversion centres and are both (4+2)‐coordinated. Hydro­gen bonds are medium‐strong to weak in the three compounds. The oxalate groups are slightly non‐planar only in the Cs–Mg compound, (II), and are more distinctly non‐planar in the K–Cu compound, (III).  相似文献   

4.
In the title compound, catena‐poly­[[[tri­aqua­copper(II)]‐μ‐acetyl­enedi­carboxyl­ato‐κ2O:O′′] hydrate], {[Cu(C4O4)(H2O)3]·H2O}n, the CuII ion is coordinated by two monodentate carboxyl­ate groups in trans positions and three water mol­ecules, thus forming a fivefold coordination polyhedron that can be described as a distorted square pyramid. All atoms are located on general sites. The polyhedra are connected by bifunctional acetyl­ene­di­carboxyl­ate ligands, to form almost linear chains parallel to [001]. Hydro­gen bonds involving the non‐coordinated water mol­ecule connect these chains to form a three‐dimensional framework.  相似文献   

5.
The crystals of the title salt, 6,21‐di­aza‐3,9,18,24‐tetraazoniatri­cyclo­[22.2.2.211,14]­triaconta‐11,13,24,26(1),27,29‐hexaene benzene‐1,2,4,5‐tetra­carboxyl­ate(4?) hexahydrate, C24H42N64+·C10H2O84?·6H2O, are formed by the intermolecular interaction of a macrocyclic hex­amine with a mol­ecule of C6H2(COOH)4 in aqueous solution. Both the cation and the anion are on inversion centres. Hydro­gen bonds are formed between the four ammonium cations in the hex­amine and the four carboxyl­ate anions in the aromatic acid. Stacks exist along the crystallographic a axis in the solid state. The water mol­ecules also take part in a hydrogen‐bonding network which joins these stacks together.  相似文献   

6.
In the title compound, poly[[aqua(1,10‐phenanthroline)­cobalt(II)]‐μ4‐di­hydrogen benzene‐1,2,4,5‐tetra­carboxyl­ato], [Co(C10H4O8)(C12H8N2)(H2O)]n, each cobalt(II) cation has an octahedral geometry completed by one aqua O atom, three carboxy O atoms belonging to three H2TCB2− anions (H2TCB2− is di­hydrogen ­benzene‐1,2,4,5‐tetra­carboxyl­ate) and two N atoms from a 1,10‐phenanthroline mol­ecule. In the asymmetric unit, there are two half H2TCB2− anions lying about independent inversion centres. The bridging H2TCB2− anions have two coordination modes, viz.μ2‐H2TCB2− and μ4‐H2TCB2−, resulting in a two‐dimensional coordination polymer. Furthermore, a three‐dimensional network is formed by Ocarboxy⋯Ocarboxy hydrogen‐bond interactions, with H⋯A distances in the range 1.69–1.82 Å, and Ocarboxy⋯Owater interactions, with H⋯A distances in the range 1.91–1.94 Å.  相似文献   

7.
In the title complex salt, tetra­kis[hexa­ammine­cobalt(III)] hexa­chloro­cadmate(II) bis­[aqua­tetra­chloro­thio­cyanato­cad­mate(II)] dichloride dihydrate, the discrete ions, i.e. [Co(NH3)6]3+, Cl, [CdCl6]4− (located on an inversion centre) and [CdCl4(SCN)(H2O)]3−, together with cocrystallized water mol­ecules, are assembled by means of a network of hydrogen‐bonding inter­actions. This is the first X‐ray structure determination of a hexa­amminecobalt(III) salt with two different complex chloro­cadmium anions.  相似文献   

8.
The reaction of CaCO3 with isophthalic acid in water yields nona­aqua­penta‐μ‐isophthalato‐pentacalcium octahydrate, {[Ca5(C8H4O4)5(H2O)9]·8H2O}n, a complex polymeric one‐dimensional column structure bearing metal–carboxyl­ate bonds and Ca‐bound terminal and bridging water mol­ecules, in addition to hydrogen‐bonded water mol­ecules of crystallization. The asymmetric unit comprises half of the formula unit, with one Ca2+ ion located on a twofold axis, and contains 16 unique strong O—H⋯O hydrogen bonds, some of which link the columns together.  相似文献   

9.
The X‐ray structure of 1,2,4,5‐tetra­hydroxy­benzene (benzene‐1,2,4,5‐tetrol) monohydrate, C6H6O4·H2O, (I), reveals columns of 1,2,4,5‐tetra­hydroxy­benzene parallel to the b axis that are separated by 3.364 (12) and 3.453 (11) Å. Molecules in adjacent columns are tilted relative to each other by 27.78 (8)°. Water mol­ecules fill the channels between the columns and are involved in hydrogen‐bonding interactions with the 1,2,4,5‐tetra­hydroxy­benzene mol­ecules. The crystal structure of the adduct 1,2,4,5‐tetra­hydroxy­benzene–2,5‐di­hydroxy‐1,4‐benzo­quinone (1/1), C6H6O4·C6H4O4, (II), reveals alternating mol­ecules of 1,2,4,5‐tetra­hydroxy­benzene and 2,5‐di­hydroxy‐1,4‐benzo­quinone (both lying on inversion centers), and a zigzag hydrogen‐bonded network connecting mol­ecules in three dimensions. For compound (II), the conventional X‐ray determination, (IIa), is in very good agreement with the synchrotron X‐ray determination, (IIb). When differences in data collection temperatures are taken into account, even the displacement parameters are in very good agreement.  相似文献   

10.
In the title compound, [Cu(C10H4O8)(C12H8N2)]n, the CuII cation has a four‐coordination environment completed by two N atoms from one 1,10‐phenanthroline (phen) ligand and two O atoms belonging to two di­hydrogen benzene‐1,2,4,5‐­tetra­carboxyl­ate anions (H2TCB2−). There is a twofold axis passing through the CuII cation and the centre of the phen ligand. The [Cu(phen)]2+ moieties are bridged by H2TCB2− anions to form an infinite one‐dimensional coordination polymer with a zigzag chain structure along the c axis. A double‐chain structure is formed by hydrogen bonds between adjacent zigzag chains. Furthermore, there are π–π stacking inter­actions between the phen ligands, with an average distance of 3.64 Å, resulting in a two‐dimensional network structure.  相似文献   

11.
In the title compound, tetrakis­(tetra­hydro­furan)­lithium(I) tri‐μ‐phenyl­thiol­ato‐bis­[tris­(phenyl­thiol­ato)­titanate(IV)], [Li(C4H8O)4][Ti2(C6H5S)9], (I), the central structural motif of the [Ti2(SC6H5)9]? anion features a face‐sharing bi‐octa­hedron. The charge is balanced with a [Li(C4H8O)4]+ cation. The asymmetric unit contains Ti, Li and a heavily disordered tetra­hydro­furan mol­ecule on a threefold axis, and two terminal and a bridging thio­phenolate moiety and a slightly disordered tetra­hydro­furan mol­ecule on general positions.  相似文献   

12.
The title complexes, trans‐di­aqua­bis­(quinoline‐2‐carboxyl­ato‐κ2N,O)­cobalt(II)–water–methanol (1/2/2), [Co(C10H6NO2)2(H2O)2]·2CH4O·2H2O, and trans‐di­aqua­bis­(quinoline‐2‐car­box­yl­ato‐κ2N,O)­nickel(II)–water–methanol (1/2/2), [Ni(C10H6NO2)2(H2O)2]·2CH4O·2H2O, are isomorphous and contain CoII and NiII ions at centers of inversion. Both complexes have the same distorted octahedral coordination geometry, and each metal ion is coordinated by two quinoline N atoms, two carboxyl­ate O atoms and two water O atoms. The quinoline‐2‐carboxyl­ate ligands lie in trans positions with respect to one another, forming the equatorial plane, with the two water ligands occupying the axial positions. The complex mol­ecules are linked together by hydrogen bonding involving a series of ring patterns which include the uncoordinated water and methanol mol­ecules.  相似文献   

13.
The structures of aqua­di­chloro­bis(1H‐imidazole)­cobalt(II), [CoCl2(Him)2(H2O)2] (Him is 1H‐imidazole, C3H4N2), (I), and aqua­di­chloro­bis(1H‐imidazole)­nickel(II), [NiCl2(Him)2(H2O)2], (II), are isomorphous and consist of monomers with inversion symmetry. The three monodentate ligands (imidazole, chlorine and aqua), together with their symmetry equivalents, define almost perfect octahedra. Hydro­gen‐bonding interactions via the imidazole and aqua H atoms lead to a three‐dimensional network.  相似文献   

14.
catena‐Poly[[[tetra­aqua­nickel(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′] thio­sulfate dihydrate], {[Ni(C10H8N2)(H2O)4]S2O3·2H2O}n, (I), and catena‐poly[[[tetra­aqua­nickel(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′] sulfate methanol solvate monohydrate], {[Ni(C10H8N2)(H2O)4]SO4·CH4O·H2O}n, (II), are built up of {[Ni(4,4′‐bipy)(H2O)4]2+}n chains (4,4′‐bipy is 4,4′‐bipyridine) inter­woven in an unusual P31 fashion. Voids are filled by the corresponding counter‐anions and solvate mol­ecules, defining a complex three‐dimensional network surrounding them. In both structures, the cationic chains evolve around a set of twofold axes passing through the NiII ions and bis­ecting the aromatic amines through their N (and their opposite C) atoms.  相似文献   

15.
The sodium salt of a complex anion formed between gadolinium(III) and three variously deprotonated chelidamic acid (4‐hydroxy­pyridine‐2,6‐di­carboxyl­ic acid) ligand moi­eties, assigned as Na5[Gd(C7H2NO5)2(C7H3NO5)]·16H2O, i.e. pentasodium (4‐hydroxy­pyridine‐2,6‐di­carboxyl­ate)­bis(4‐oxido­pyridine‐2,6‐di­carboxyl­ate)­gadolinium(III) hexadecahydrate, forms as colourless monoclinic crystals upon vapour diffusion of ethanol into its aqueous solution. The ligand moieties, assigned as two trianionic and one dianionic chelidamate species, are all tridentate in the complex anion of tricapped trigonal prismatic donor‐atom geometry. The geometry of the ligands and that of the primary coordination sphere is very similar to that of the analogous anionic tris­(ligand)–rare earth complexes of the pyridine‐2,6‐di­carboxyl­ate (dipicolinate) dianion.  相似文献   

16.
In the title complex, [Cu2(C10H2O8)(C10H8N2)2]n, the CuII cation has a four‐coordinated environment, completed by two carboxyl O atoms belonging to two 1,2,4,5‐benzene­tetra­carboxyl­ate anions (TCB4−) and two N atoms from one 2,2′‐bi­pyridine (2,2′‐bipy) ligand, forming a distorted square‐planar geometry. The [Cu(2,2′‐bipy)]2+ moieties are bridged by TCB4− anions, which lie about inversion centres, forming an infinite one‐dimensional coordination polymer with a double‐chain structure along the a axis. A two‐dimensional network structure is formed via a face‐to‐face π–π interaction between the 2,2′‐bipy rings belonging to two adjacent double chains, at a distance of approximately 3.56 Å.  相似文献   

17.
The hydro­thermal reaction of an aqueous solution of Cu(CH3COO)2·H2O, 1,2,4,5‐benzene­tetra­carboxylic acid and 4,4′‐bi­pyridine gave rise to the interesting title three‐dimensional polymer {[Cu6(btec)3(4,4′‐bpy)3(H2O)2]·2H2O}n (btec is 1,2,4,5‐benzene­tetra­carboxyl­ate, C10H2O84−, and 4,4′‐bpy is 4,4′‐bi­pyridine, C10H8N2), in which each btec ligand links six copper(II) cations into a lamellar [Cu6(btec)3(H2O)2]n sub­polymer framework. There are two distinct diamine units and two distinct carboxylate units, with one of each lying across an inversion centre.  相似文献   

18.
We have been able, via a new synthetic route, to obtain a complete crystal structure of the title compound, tetra­aqua­barium hydro­xide iodide, [Ba(OH)I(H2O)4], for which the heavy atoms only were characterized by Kellersohn, ­Beckenkamp & Lutz [Z. Naturforsch. TeilB (1991), 46 , 1279–1286]. In the present results, the H‐atom positions could be located using X‐ray data collection at low temperature. A three‐dimensional network is built up via hydrogen bonds. It was also observed that the title compound undergoes hy­drolysis and might therefore be regarded as an intermediate in the formation of sol–gels, starting from BaI2 and leading to [Ba(OH)2(H2O)x].  相似文献   

19.
In the structure of the title compound, [Mn2(C7H3NO4)2(H2O)6]·2C7H5NO4, a centrosymmetric dinuclear complex, hexaa­aqua­bis­(pyri­dine‐2,6‐di­carboxyl­ato)­dimanganese(II) and free pyri­dine‐2,6‐di­carboxyl­ic acid are present in a 1:2 ratio. In the complex, each Mn2+ ion is coordinated by three O atoms and one N atom from the pyridine‐2,6‐di­carboxyl­ate ligands and by three water O atoms, resulting in a distorted pentagonal bipyramidal coordination. Within the centrosymmetric dinuclear complex, two Mn2+ ions are bridged by two carboxyl­ate O atoms. The crystal structure is stabilized by hydrogen bonds involving all the H atoms of the water ligands.  相似文献   

20.
The copper(II) ion in the synanti carboxyl­ate‐bridged one‐dimensional zigzag chain title complex, {[Cu(C16H18N3O2)]ClO4}n, exhibits a distorted trigonal–bipyramidal environment. Two N atoms and one carboxyl­ate O atom of the ligand form the basal plane, while the axial positions are filled by an N atom of the ligand and one O atom belonging to the carboxyl­ate group of an adjacent mol­ecule. The crystal packing is enhanced by C—H⋯O(perchlorate) hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号