首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The regioisomeric composition of the adducts of unsymmetrical oxiranes with achiral and chiral phosphorochloridites was studied. Factors allowing enantiomeric assessment of chiral oxiranes with the aid of chiral derivatizing organophosphorus reagents were revealed.  相似文献   

2.
《Tetrahedron: Asymmetry》1998,9(22):3959-3962
The asymmetric epoxidation of nitro alkenes using oxygen in the presence of diethylzinc and N-methyl pseudo-ephedrine as a chiral additive is reported. This method provides an access to 3-substituted trans-2-nitro oxiranes of excellent diastereomeric purity (de≥98%) and with medium to good enantiomeric excesses (ee=36–82%).  相似文献   

3.
Enantioenriched selenonium ylides have been generated by addition of benzyl bromide to C2 symmetric (2R,5R)-2,5-dimethylselenolane in the presence of NaOH, and subsequently reacted with a variety of aldehydes to give oxiranes with excellent enantiomeric excesses (a catalytic version has been achieved); also, an aliphatic cyclic hypervalent dibromoselenurane structure has been demonstrated by X-ray analysis.  相似文献   

4.
《Tetrahedron: Asymmetry》2005,16(6):1199-1205
Optically active (R)- and (S)-1-substituted-3-(arylthio)propan-2-ols have been prepared in the reaction of the appropriate 2-(arylthiomethyl)oxiranes with chloride and azide anions followed by a lipase-catalyzed transesterification. The effects of the enzyme preparation as well as of the reaction conditions have been compared in terms of the enantiomeric excess of the obtained acetate and unreacted alcohol.  相似文献   

5.
Corrigendum     
Prochiral α-haloketones are reduced enantioselectively with the asymmetric reducing system lithium borohydride N,N′-dibenzoylcystine /t-butyl alcohol to give the corresponding halohydrins with up to 86% enantiomeric excess, some of which are converted to optically active oxiranes.  相似文献   

6.
A novel, efficient, highly regioselective Sc(OTf)(3)-catalyzed [3+2] cycloaddition of electron-rich alkynes with donor-acceptor oxiranes via highly chemoselective C-C bond cleavage under mild conditions was developed.  相似文献   

7.
Reaction between the Os(VI)-hydrazido complex, trans-[Os(VI)(tpy)(Cl)(2)(NN(CH(2))(4)O)](2+) (tpy = 2,2':6',2"-terpyridine and O(CH(2))(4)N(-) = morpholide), and a series of N- or O-bases gives as products the substituted Os(VI)-hydrazido complexes, trans-[Os(VI)(4'-RNtpy)(Cl)(2)(NN(CH(2))(4)O)](2+) or trans-[Os(VI)(4'-ROtpy)(Cl)(2)(NN(CH(2))(4)O)](2+) (RN(-) = anilide (PhNH(-)); S,S-diphenyl sulfilimide (Ph(2)S=N(-)); benzophenone imide (Ph(2)C=N(-)); piperidide ((CH(2))(5)N(-)); morpholide (O(CH(2))(4)N(-)); ethylamide (EtNH(-)); diethylamide (Et(2)N(-)); and tert-butylamide (t-BuNH(-)) and RO(-) = tert-butoxide (t-BuO(-)) and acetate (MeCO(2)(-)). The rate law for the formation of the morpholide-substituted complex is first order in trans-[Os(VI)(tpy)(Cl)(2)(NN(CH(2))(4)O)](2+) and second order in morpholine with k(morp)(25 degrees C, CH(3)CN) = (2.15 +/- 0.04) x 10(6) M(-)(2) s(-)(1). Possible mechanisms are proposed for substitution at the 4'-position of the tpy ligand by the added nucleophiles. The key features of the suggested mechanisms are the extraordinary electron withdrawing effect of Os(VI) on tpy and the ability of the metal to undergo intramolecular Os(VI) to Os(IV) electron transfer. These substituted Os(VI)-hydrazido complexes can be electrochemically reduced to the corresponding Os(V), Os(IV), and Os(III) forms. The Os-N bond length of 1.778(4) A and Os-N-N angle of 172.5(4) degrees in trans-[Os(VI)(4'-O(CH(2))(4)Ntpy)(Cl)(2)(NN(CH(2))(4)O)](2+) are consistent with sp-hybridization of the alpha-nitrogen of the hydrazido ligand and an Os-N triple bond. The extensive ring substitution chemistry implied for the Os(VI)-hydrazido complexes is discussed.  相似文献   

8.
Leung SK  Huang JS  Zhu N  Che CM 《Inorganic chemistry》2003,42(22):7266-7272
Reactions of dioxoosmium(VI) porphyrins [Os(VI)(Por)O(2)] with excess 1,1-diphenylhydrazine in tetrahydrofuran at ca. 55 degrees C for 15 min afforded bis(hydrazido(1-))osmium(IV) porphyrins [Os(IV)(Por)(NHNPh(2))(2)] (1a, Por = TPP (meso-tetraphenylporphyrinato dianion); 1b, Por = TTP (meso-tetrakis(p-tolyl)porphyrinato dianion)), hydroxo(amido)osmium(IV) porphyrins [Os(IV)(Por)(NPh(2))(OH)] (2a, Por = TPP; 2b, Por = TTP), and bis(hydrazido(2-))osmium(VI) porphyrin [Os(VI)(Por)(NNPh(2))(2)] (3c, Por = TMP (meso-tetramesitylporphyrinato dianion)). The same reaction under harsher conditions (in refluxing tetrahydrofuran for ca. 1 h) gave a nitridoosmium(VI) porphyrin, [Os(VI)(Por)(N)(OH)] (4b, Por = TTP). Oxidation of 1a,b with bromine in dichloromethane afforded bis(hydrazido(2-)) complexes [Os(VI)(TPP)(NNPh(2))(2)] (3a) and [Os(VI)(TTP)(NNPh(2))(2)] (3b), respectively. All the new osmium porphyrins were identified by (1)H NMR, IR, and UV-vis spectroscopy and mass spectrometry; the structure of 2b was determined by X-ray crystallography (Os-NPh(2) = 1.944(6) A, Os-OH = 1.952(5) A).  相似文献   

9.
Ohashi K  Shikina K  Nagatsu H  Ito I  Yamamoto K 《Talanta》1984,31(11):1031-1035
The number of capriquat molecules per chromium(VI) atom in the chromate-capriquat ion-association complex has been found to be between one and two. The distribution ratio in the extraction of chromium(VI) with capriquat is dependent on the dielectric constant of the organic solvent, with a minimum at a dielectric constant of about 8. The absorption spectra of the ion-pair extracted into cyclohexane, carbon tetrachloride, benzene and n-butanol are very similar to that of chromate in aqueous solution. The absorption spectra of the chromium(VI)-capriquat extracts in these organic solvents gradually change to an absorption spectrum similar to that of HCrO(4)(-) in aqueous solution. Chromium(VI)-capriquat extracted into chloroform and 1,2-dichloroethane gives absorption spectra similar to that of HCrO(4)(-)in aqueous medium. The chromium(VI)-capriquat species extracted into 1,2-dichloroethane may be (Q(+))(2).CrO(4)(2-)(H(2)O)(n). In contrast, chromium(VI) is extracted with capriquat into the other organic solvents from ammoniacal medium as a mixture of (Q(+))(2).CrO(4)(2-)(H(2)O)(n) and Q(+).NH(4)(+).CrO(4)(2-)(H(2)O)(n). The spectral change is ascribed to the change of the extracted species from (Q(+))(2).CrO(4)(2-)(H(2)O)(n) and Q(+)NH(4)(+).CrO(4)(-)(H(2)O)(n) to Q(+).HCrO(4)(2-)(H(2)O)(n-1). The chromium(VI)-zephiramine species extracted is formulated as (Q(+), NH(4)(+))(2)CrO(4)(2-)(H(2)O)(n).(Q(+).Cl(-))(m). Molybdenum(VI) is extracted with capriquat into the same organic solvents as a mixture of (Q(+))(2).MoO(4)(2-)(H(2)O)(n) and Q(+).NH(4)(+).MoO(4)(2-).(H(2)O)(n).  相似文献   

10.
beta-Halogenated dioxoruthenium(VI) porphyrin complexes [Ru(VI)(F(28)-tpp)O(2)] [F(28)-tpp=2,3,7,8,12,13, 17,18-octafluoro-5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato(2-)] and [Ru(VI)(beta-Br(8)-tmp)O(2)] [beta-Br(8)-tmp=2,3,7,8,12,13,17,18-octabromo-5,10,15,20- tetrakis(2,4,6-trimethylphenyl)porphyrinato(2-)] were prepared from reactions of [Ru(II)(por)(CO)] [por=porphyrinato(2-)] with m-chloroperoxybenzoic acid in CH(2)Cl(2). Reactions of [Ru(VI)(por)O(2)] with excess PPh(3) in CH(2)Cl(2) gave [Ru(II)(F(20)-tpp)(PPh(3))(2)] [F(20)-tpp=5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato(2-)] and [Ru(II)(F(28)-tpp)(PPh(3))(2)]. The structures of [Ru(II)(por)(CO)(H(2)O)] and [Ru(II)(por)(PPh(3))(2)] (por=F(20)-tpp, F(28)-tpp) were determined by X-ray crystallography, revealing the effect of beta-fluorination of the porphyrin ligand on the coordination of axial ligands to ruthenium atom. The X-ray crystal structure of [Ru(VI)(F(20)-tpp)O(2)] shows a Ru=O bond length of 1.718(3) A. Electrochemical reduction of [Ru(VI)(por)O(2)] (Ru(VI) to Ru(V)) is irreversible or quasi-reversible, with the E(p,c)(Ru(VI/V)) spanning -0.31 to -1.15 V versus Cp(2)Fe(+/0). Kinetic studies were performed for the reactions of various [Ru(VI)(por)O(2)], including [Ru(VI)(F(28)-tpp)O(2)] and [Ru(VI)(beta-Br(8)-tmp)O(2)], with para-substituted styrenes p-X-C(6)H(4)CH=CH(2) (X=H, F, Cl, Me, MeO), cis- and trans-beta-methylstyrene, cyclohexene, norbornene, ethylbenzene, cumene, 9,10-dihydroanthracene, xanthene, and fluorene. The second-order rate constants (k(2)) obtained for the hydrocarbon oxidations by [Ru(VI)(F(28)-tpp)O(2)] are up to 28-fold larger than by [Ru(VI)(F(20)-tpp)O(2)]. Dual-parameter Hammett correlation implies that the styrene oxidation by [Ru(VI)(F(28)-tpp)O(2)] should involve rate-limiting generation of a benzylic radical intermediate, and the spin delocalization effect is more important than the polar effect. The k(2) values for the oxidation of styrene and ethylbenzene by [Ru(VI)(por)O(2)] increase with E(p,c)(Ru(VI/V)), and there is a linear correlation between log k(2) and E(p,c)(Ru(VI/V)). The small slope (approximately 2 V(-1)) of the log k(2) versus E(p,c)(Ru(VI/V)) plot suggests that the extent of charge transfer is small in the rate-determining step of the hydrocarbon oxidations. The rate constants correlate well with the C-H bond dissociation energies, in favor of a hydrogen-atom abstraction mechanism.  相似文献   

11.
[reaction: see text] The intramolecular nucleophilic attack of the epoxides on the exo-Co(2)(CO)(6)-propargylic cations provided cyclic ethers in good yields. The use of substrates with stereochemically defined oxiranes provided polysubstituted tetrahydropyrans and oxepanes with a high degree of stereocontrol. The cyclization is sensitive to the nature of the protecting group used at the primary alcohol, the use of tert-butyl carbonates being highly effective in terms of regioselectivity and yields.  相似文献   

12.
We report the first transmission of solvent-coordinated dipositive plutonyl ion, Pu(VI)O(2)(2+), from solution to the gas phase by electrospray ionization (ESI) of plutonyl solutions in water/acetone and water/acetonitrile. ESI of plutonyl and uranyl solutions produced the isolable gas-phase complexes, [An(VI)O(2)(CH(3)COCH(3))(4,5,6)](2+), [An(VI)O(2)(CH(3)COCH(3))(3)(H(2)O)](2+), and [An(VI)O(2)(CH(3)CN)(4)](2+); additional complex compositions were observed for uranyl. In accord with relative actinyl stabilities, U(VI)O(2)(2+) > Pu(VI)O(2)(2+) > Np(VI)O(2)(2+), the yields of plutonyl complexes were about an order of magnitude less than those of uranyl, and dipositive neptunyl complexes were not observed. Collision-induced dissociation (CID) of the dipositive coordination complexes in a quadrupole ion trap produced doubly- and singly-charged fragment ions; the fragmentation products reveal differences in underlying chemistries of plutonyl and uranyl, including the lower stability of Pu(VI) as compared with U(VI). Particularly notable was the distinctive CID fragment ion, [Pu(IV)(OH)(3)](+) from [Pu(VI)O(2)(CH(3)COCH(3))(6)](2+), where the plutonyl structure has been disrupted and the tetravalent plutonium hydroxide produced; this process was not observed for uranyl.  相似文献   

13.
Sasaki T  Meguro Y  Yoshida Z 《Talanta》1998,46(4):689-695
UV-visible absorption spectra of uranium(VI)-tributylphosphate (U(VI)-TBP) complex dissolved in supercritical CO(2) at 40-60 degrees C and 100-250 kg cm(-2) were recorded. Wavelengths and molar extinction coefficients for the absorption peaks of U(VI)-TBP were determined and confirmed to be in good agreement with those of UO(2)(NO(3))(2)(TBP)(2) complex dissolved in organic solvents such as n-hexane. The absorbance at a given wavelength was proportional to the concentration of U(VI) species in supercritical CO(2), indicating a feasibility of in-situ determination of U(VI) concentration in CO(2) phase. A lower detection limit of U(VI)-TBP complex was estimated to be ca. 1x10(-3)M. The molar extinction coefficient of U(VI)-TBP in supercritical CO(2) decreased slightly with an increase of the density of CO(2) medium, suggesting that the solute-solvent interaction of U(VI)-TBP complex with CO(2) was affected by the density. On the basis of the spectra obtained, phase behavior and solubility of UO(2)(NO(3))(2)(TBP)(2)+H(NO(3))(TBP)+TBP in supercritical CO(2) were elucidated.  相似文献   

14.
The molecular and electronic structure of the spherical Keplerates [{(Mo(VI))Mo(VI)(5)O(21)}(12)(Mo(V)(2)O(4))(30)](12-) (Mo(132)) and [{(W(VI))W(VI)(5)O(21)}(12)(Mo(V)(2)O(4))(30)](12-) (W(72)Mo(60)) has been determined, for the first time, using first-principles density functional theory (DFT) based methods including solvent effects. Computed geometric parameters are in very good agreement with X-ray data, whereas the electronic structure reveals the archetypal nature of polyoxometalates.  相似文献   

15.
The anions [M(VI)O(O(2))(2)(OR)](-) and [M(VI)O(3)(OR)](-)(M = Cr, Mo, W; R = H, Me, Et, (n)Pr, (i)Pr) were transferred to the gas phase by the electrospray process. Their decomposition was examined by multistage mass spectrometry and collisional activation experiments. The molybdate and tungstate anions [M(VI)O(O(2))(2)(OR)](-) underwent parallel elimination of aldehyde (ketone) and dioxygen while the equivalent chromate underwent loss of dioxygen only. The peroxo ligands were the source of oxidising equivalents in both reactions. For each alkoxo ligand, the total yield of aldehyde for the tungstate system exceeded that for the molybdate system. Collisional activation of [M(VI)O(3)(OMe)](-) led to clean elimination of formaldehyde with the metal centre supplying the oxidising equivalents. For larger alkoxo ligands, only the chromate centre eliminated aldehyde, while the molybdate and tungstate centres underwent clean loss of alkene. Threshold activation voltages indicated that the peroxo ligands of [W(VI)O(O(2))(2)(OMe)](-) are more oxidising than the tungstate centre of [W(VI)O(3)(OMe)](-). (2)H and (18)O isotope tracing experiments were consistent with a formal hydride transfer mechanism operating for oxidation of alkoxo ligand in each system. In the solid state, anions [M(VI)O(O(2))(2)(OR)](-) are typically pentagonal pyramidal (oxo in apical site) while [M(VI)O(3)(OR)](-) are tetrahedral. The data indicate that an equatorial ligand position is the site of alkoxo oxidation in [M(VI)O(O(2))(2)(OR)](-) anions. Comparisons of the gas phase data with those for a solution phase system are made.  相似文献   

16.
The reactions of (NH(4))(2)Mo(2)O(7)·2H(2)O with polyhydroxy phenols (catechol or 2,3-dihydroxynaphthalene) and ethylenediamine (en), trimethylenediamine (tn), 1,2-propanediamine (pn), triethylamine (Et(3)N) respectively, in the mixed-solvent of MeCN-EtOH-amine, have resulted in five molybdenum(VI) complexes, (enH(2))[Mo(VI)O(3)(cat)(en)] (1), (tnH(2))[Mo(VI)O(3)(cat)(tn)] (2), (enH)(2)[Mo(VI)O(2)(cat)(2)](en)(0.5) (3), (pnH(2))(2)[Mo(VI)O(2)(cat)(2)] (4) and (HNEt(3))(2)[Mo(VI)O(2)(C(10)H(8)O(2))(2)] (5), of which the structural features were investigated by X-ray diffraction. MTT assay tests indicated that their inhibition ratios against human cancer cells decreased in the order: (1) ≈ (2) > (3) ≈ (4) > (5), i.e. the activities decreased when the chelation number or the size of the aromatic ligand increased, which was consistent with the Gibbs free energies (ΔG) determined from theoretical computations by Gaussian 03. The mechanisms behind this trend were discussed preliminarily.  相似文献   

17.
A reproducible synthesis of a competent epoxidation catalyst, [Ru(VI)(TPP)(O)2)] (TPP = tetraphenylporphyrin dianion), starting from [Ru(II)(TPP)(CO)L] (L = none or CH3OH), is described. The molecular structure of the complex was determined by using ab initio X-ray powder diffraction (XRPD) methods, and its solution behavior was in detail investigated by NMR techniques such as PGSE (pulsed field gradient spin-echo) measurements. [Ru(IV)(TPP)(OH)]2O, a reported byproduct in the synthesis of [Ru(VI)(TPP)(O)2], was synthesized in a pure form by oxidation of [Ru(II)(TPP)(CO)L] or by a coproportionation reaction of [Ru(VI)(TPP)(O)2] and [Ru(II)(TPP)(CO)L], and its molecular structure was then determined by XRPD analysis. [Ru(VI)(TPP)(O)2] can be reduced by dimethyl sulfoxide or by carbon monoxide to yield [Ru(II)(TPP)(S-DMSO)2] or [Ru(II)(TPP)(CO)(H2O)], respectively. These two species were characterized by conventional single-crystal X-ray diffraction analysis.  相似文献   

18.
The heterobimetallic actinide compound UO(2)Ce(H(2)O)[C(6)H(4)(PO(3)H)(2)](2)·H(2)O was prepared via the hydrothermal reaction of U(VI) and Ce(IV) in the presence of 1,2-phenylenediphosphonic acid. We demonstrate that this is a kinetic product that is not stable with respect to decomposition to the monometallic compounds. Similar reactions have been explored with U(VI) and Ce(III), resulting in the oxidation of Ce(III) to Ce(IV) and the formation of the Ce(IV) phosphonate, Ce[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O, UO(2)Ce(H(2)O)[C(6)H(4)(PO(3)H)(2)](2)·H(2)O, and UO(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·H(2)O. In comparison, the reaction of U(VI) with Np(VI) only yields Np[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O and aqueous U(VI), whereas the reaction of U(VI) with Pu(VI) yields the disordered U(VI)/Pu(VI) compound, (U(0.9)Pu(0.1))O(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·H(2)O, and the Pu(IV) phosphonate, Pu[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O. The reactions of Ce(IV) with Np(VI) yield disordered heterobimetallic phosphonates with both M[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Ce, Np) and M[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O (M = Ce, Np) structures, as well as the Ce(IV) phosphonate Ce[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O. Ce(IV) reacts with Pu(IV) to yield the Pu(VI) compound, PuO(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·3H(2)O, and a disordered heterobimetallic Pu(IV)/Ce(IV) compound with the M[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Ce, Pu) structure. Mixtures of Np(VI) and Pu(VI) yield disordered heterobimetallic Np(IV)/Pu(IV) phosphonates with both the An[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Np, Pu) and An[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O (M = Np, Pu) formulas.  相似文献   

19.
The reactions between trans-[Os(IV)(tpy)(Cl)(2)(NCN)] (1) and PPh(3) and between trans-[Os(IV)(tpy)(Cl)(2)(NPPh(3))](+) (2) and CN(-) provide new examples of double derivatization of the nitrido ligand in an Os(VI)-nitrido complex (Os(VI)N). The nitrilic N-bound product from the first reaction, trans-[Os(II)(tpy)(Cl)(2)(NCNPPh(3))] (3), is the coordination isomer of the first iminic N-bound product from the second reaction, trans-[Os(II)(tpy)(Cl)(2)(N(CN)(PPh(3)))] (4). In CH(3)CN at 45 degrees C, 4 undergoes isomerrization to 3 followed by solvolysis and release of (N-cyano)iminophosphorane, NCNPPh(3). These reactions demonstrate new double derivatization reactions of the nitrido ligand in Os(VI)N with its implied synthetic utility.  相似文献   

20.
Mehra HC  Frankenberger WT 《Talanta》1989,36(9):889-892
Single-column ion-chromatography (SCIC) was investigated as a routine, rapid, precise and selective analytical method for the determination of chromium(VI) in aqueous extracts of soil and sewage sludge. Chromatographic parameters were optimized for determination of Cr(VI), NO(-)(3) and SO(2-)(4). A low-capacity resin-based column was used for the separation and the anions were determined by conductometric detection. p-Hydroxybenzoic acid (5mM) at pH 8.5 was used as the eluent. The limit of detection, defined as S/N = 3, was 92 mug/l. The resolution between Cr(VI) and SO(2-)(4) was 2.8, the precision ranged from 0.9% for NO(-)(3) to 2.0% for Cr(VI) with a 500-mul injection. The SCIC results for Cr(VI) agreed closely with those obtained by inductively coupled argon-plasma emission and spectrophotometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号