首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrospray ionization of actinyl perchlorate solutions in H2O with 5% by volume of dimethylformamide (DMF) produced the isolatable gas-phase complexes, [AnVIO2(DMF)3(H2O)]2+ and [AnVIO2(DMF)4]2+, where An = U, Np, and Pu. Collision-induced dissociation confirmed the composition of the dipositive coordination complexes, and produced doubly- and singly-charged fragment ions. The fragmentation products reveal differences in underlying chemistries of uranyl, neptunyl, and plutonyl, including the lower stability of Np(VI) and Pu(VI) compared with U(VI).  相似文献   

2.
Reactions of atomic and ligated dipositive actinide ions, An2+, AnO2+, AnOH2+, and AnO2(2+) (An = Th, U, Np, Pu, Am) were systematically studied by Fourier transform ion cyclotron resonance mass spectrometry. Kinetics were measured for reactions with the oxidants, N2O, C2H4O (ethylene oxide), H2O, O2, CO2, NO, and CH2O. Each of the five An2+ ions reacted with one or more of these oxidants to produce AnO2+, and reacted with H2O to produce AnOH2+. The measured pseudo-first-order reaction rate constants, k, revealed disparate reaction efficiencies, k/k(COL): Th2+ was generally the most reactive and Am2+ the least. Whereas each oxidant reacted with Th2+ to give ThO2+, only C2H4O oxidized Am2+ to AmO2+. The other An2+ exhibited intermediate reactivities. Based on the oxidation reactions, bond energies and formation enthalpies were derived for the AnO2+, as were second ionization energies for the monoxides, IE[AnO+]. The bare dipositive actinyl ions, UO2(2+), NpO2(2+), and PuO2(2+), were produced from the oxidation of the corresponding AnO2+ by N2O, and by O2 in the cases of UO2+ and NpO2+. Thermodynamic properties were derived for these three actinyls, including enthalpies of formation and electron affinities. It is concluded that bare UO2(2+), NpO2(2+), and PuO2(2+) are thermodynamically stable toward Coulomb dissociation to [AnO+ + O+] or [An+ + O2+]. It is predicted that bare AmO2(2+) is thermodynamically stable. In accord with the expected instability of Th(VI), ThO(2+) was not oxidized to ThO2(2+) by any of the seven oxidants. The gas-phase results are compared with the aqueous thermochemistry. Hydration enthalpies were derived here for uranyl and plutonyl; our deltaH(hyd)[UO2(2+)] is substantially more negative than the previously reported value, but is essentially the same as our deltaH(hyd)[PuO2(2+)].  相似文献   

3.
The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) (bpy = 2,2'-bipyridine) in H(2)O at room temperature proceeded to afford two new nitrosylruthenium complexes. These complexes have been identified as nitrosylruthenium complexes containing the N-bound methylcarboxyimidato ligand, cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+), and methylcarboxyimido acid ligand, cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+), formed by an electrophilic reaction at the nitrile carbon of the acetonitrile coordinated to the ruthenium ion. The X-ray structure analysis on a single crystal obtained from CH(3)CN-H(2)O solution of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](PF(6))(3) has been performed: C(22)H(20.5)N(6)O(2)P(2.5)F(15)Ru, orthorhombic, Pccn, a = 15.966(1) A, b = 31.839(1) A, c = 11.707(1) A, V = 5950.8(4) A(3), and Z = 8. The structural results revealed that the single crystal consisted of 1:1 mixture of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+) and cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+) and the structural formula of this single crystal was thus [Ru(NO)(NH=C(OH(0.5))CH(3))(bpy)(2)](PF(6))(2.5). The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) in dry CH(3)OH-CH(3)CN at room temperature afforded a nitrosylruthenium complex containing the methyl methylcarboxyimidate ligand, cis-[Ru(NO)(NH=C(OCH(3))CH(3))(bpy)(2)](3+). The structure has been determined by X-ray structure analysis: C(25)H(29)N(8)O(18)Cl(3)Ru, monoclinic, P2(1)/c, a = 13.129(1) A, b = 17.053(1) A, c = 15.711(1) A, beta = 90.876(5) degrees, V = 3517.3(4) A(3), and Z = 4.  相似文献   

4.
Reaction between the Os(VI)-hydrazido complex, trans-[Os(VI)(tpy)(Cl)(2)(NN(CH(2))(4)O)](2+) (tpy = 2,2':6',2"-terpyridine and O(CH(2))(4)N(-) = morpholide), and a series of N- or O-bases gives as products the substituted Os(VI)-hydrazido complexes, trans-[Os(VI)(4'-RNtpy)(Cl)(2)(NN(CH(2))(4)O)](2+) or trans-[Os(VI)(4'-ROtpy)(Cl)(2)(NN(CH(2))(4)O)](2+) (RN(-) = anilide (PhNH(-)); S,S-diphenyl sulfilimide (Ph(2)S=N(-)); benzophenone imide (Ph(2)C=N(-)); piperidide ((CH(2))(5)N(-)); morpholide (O(CH(2))(4)N(-)); ethylamide (EtNH(-)); diethylamide (Et(2)N(-)); and tert-butylamide (t-BuNH(-)) and RO(-) = tert-butoxide (t-BuO(-)) and acetate (MeCO(2)(-)). The rate law for the formation of the morpholide-substituted complex is first order in trans-[Os(VI)(tpy)(Cl)(2)(NN(CH(2))(4)O)](2+) and second order in morpholine with k(morp)(25 degrees C, CH(3)CN) = (2.15 +/- 0.04) x 10(6) M(-)(2) s(-)(1). Possible mechanisms are proposed for substitution at the 4'-position of the tpy ligand by the added nucleophiles. The key features of the suggested mechanisms are the extraordinary electron withdrawing effect of Os(VI) on tpy and the ability of the metal to undergo intramolecular Os(VI) to Os(IV) electron transfer. These substituted Os(VI)-hydrazido complexes can be electrochemically reduced to the corresponding Os(V), Os(IV), and Os(III) forms. The Os-N bond length of 1.778(4) A and Os-N-N angle of 172.5(4) degrees in trans-[Os(VI)(4'-O(CH(2))(4)Ntpy)(Cl)(2)(NN(CH(2))(4)O)](2+) are consistent with sp-hybridization of the alpha-nitrogen of the hydrazido ligand and an Os-N triple bond. The extensive ring substitution chemistry implied for the Os(VI)-hydrazido complexes is discussed.  相似文献   

5.
The adducts formed between the antitumor active compounds [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2), Rh(2)(O(2)CCH(3))(4), and Rh(2)(O(2)CCF(3))(4) with DNA oligonucleotides have been assessed by matrix-assisted laser desorption ionization (MALDI) and nanoelectrospray (nanoESI) coupled to time-of-flight mass spectrometry (TOF MS). A series of MALDI studies performed on dipurine (AA, AG, GA, and GG)-containing single-stranded oligonucleotides of different lengths (tetra- to dodecamers) led to the establishment of the relative reactivity cis-[Pt(NH(3))(2)(OH(2))(2)](2+) (activated cisplatin) approximately Rh(2)(O(2)CCF(3))(4) > cis-[Pt(NH(3))(2)Cl(2)] (cisplatin) > [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2) > Rh(2)(O(2)CCH(3))(4) approximately Pt(C(6)H(6)O(4))(NH(3))(2) (carboplatin). The relative reactivity of the complexes is associated with the lability of the leaving groups. The general trend is that an increase in the length of the oligonucleotide leads to enhanced reactivity for Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2) and Rh(2)(O(2)CCH(3))(4) (except for the case of [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](2+), which reacts faster with the GG octamers than with the dodecamers), whereas the reactivity of Rh(2)(O(2)CCF(3))(4) is independent of the oligonucleotide length. When monitored by ESI, the dodecamers containing GG react faster than the respectiveAA oligonucleotides in reactions with Rh(2)(O(2)CCF(3))(4) and Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2), whereas AA oligonucleotides react faster with Rh(2)(O(2)CCH(3))(4). The mixed (AG, GA) purine sequences exhibit comparable rates of reactivity with the homopurine (AA, GG) dodecamers in reactions with Rh(2)(O(2)CCH(3))(4). The observation of initial dirhodium-DNA adducts with weak axial (ax) interactions, followed by rearrangement to more stable equatorial (eq) adducts, was achieved by electrospray ionization; the Rh-Rh bond as well as coordinated acetate or acetonitrile ligands remain intact in these dirhodium-DNA adducts. MALDI in-source decay (ISD), collision-induced dissociation (CID) MS-MS, and enzymatic digestion studies followed by MALDI and ESI MS reveal that, in the dirhodium compounds studied, the purine sites of the DNA oligonucleotides interact with the dirhodium core. Ultimately, both MALDI and ESI MS proved to be complementary, valuable tools for probing the identity and stability of dinuclear metal-DNA adducts.  相似文献   

6.
Electrospray ionization (ESI) of uranyl nitrate solutions generates a wide variety of positively and negatively charged ions, including complex adducts of uranyl ions with methoxy, hydroxy, and nitrate ligands. In the positive ion mode, ions detected by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry are sensitive to instrumental tuning parameters such as quadrupole operating frequency and trapping time. Positive ions correspond to oligomeric uranyl nitrate species that can be characterized as having a general formula of [(UO(2))(n)(A)(m)(CH(3)OH)(s)](+) or [(UO(2))(n)(O)(A)(m)(CH(3)OH)(s)](+) with n = 1-4, m = 1-7, s = 0 or 1, and A = OH, NO(3), CH(3)O or a combination of these, although the formation of NO(3)-containing species is preferred. In the negative ion mode, complexes of the form [(UO(2))(NO(3))(m)](-) (m = 1-3) are detected, although the formation of the oxo-containing ions [(UO(2))(O)(n)(NO(3))(m)](-) (n = 1-2, m = 1-2) and the hydroxy-containing ions [(UO(2))(OH)(n)(NO(3))(m)](-) (n = 1-2, m = 0-1) are also observed. The extent of coordinative unsaturation of both positive and negative ions can be determined by ligand association/exchange and H/D exchange experiments using D(2)O and CD(3)OD as neutral reaction partners in the gas-phase. Positive ions are of varying stability and reactivity and may fragment extensively upon collision with D(2)O, CD(3)OD and N(2) in sustained off-resonance irradiation/collision-induced dissociation (SORI-CID) experiments. Electron-transfer reactions, presumably occurring during electrospray ionization but also in SORI-CID, can result in reduction of U(VI) to U(V) and perhaps even U(IV).  相似文献   

7.
The structural properties of several plutonium(IV) and (VI) complexes have been examined in the gaseous and aqueous phases using Kohn-Sham density functional theory calculations with scalar relativistic effective core potentials and the polarizable continuum solvation model. The aquo and nitrate complexes of PuO(2)(2+) and Pu(4+) were considered in addition to the aquo-chloro complexes of PuO(2)(2+). The nitrate and chloro- complexes formed with triphenylphosphine oxide (TPPO) and tributylphosphate (TBP) respectively were also studied. The structural parameters of the plutonyl complexes were compared to their uranyl and neptunyl analogues. The bond lengths and vibrational frequencies of the plutonyl complexes can generally be computed with sufficient accuracy with the pure PBE density functional with shorter bond lengths being predicted by the B3LYP functional. The structural parameters of the [PuO(2)Cl(2)L(2)] systems formed with TPPO and TBP as well as the aqueous [PuO(2)Cl(2)(H(2)O)(3)] complex are matched to previous experimental results. Overall, the inclusion of ligands in the equatorial region results in significant changes in the stretching frequency of the plutonyl group. The structural features of the plutonyl (VI) systems are rather similar to those of their 5f(0) uranyl and 5f(1) neptunyl counterparts. For the Pu(IV) aquo and nitrate complexes, the average of the calculated Pu-OH(2) and Pu-O(nitrate) bond lengths are generally within 0.04 ? of the reported experimental values. Overall Kohn-Sham DFT can be used successfully in predicting the structures of this diverse set of Pu(VI) and Pu(IV) complexes.  相似文献   

8.
New ketonylplatinum(III) dinuclear complexes [Pt(2)((CH(3))(3)CCONH)(2)(NH(3))(4)(CH(2)COPh)](NO(3))(3) (4), [Pt(2)((CH(3))(3)CCONH)(2)(NH(3))(4)(CH(CH(3))COC(2)H(5))](NO(3))(3) (5), and [Pt(2)((CH(3))(3)CCONH)(2)(NH(3))(4)(CH(2)COCH(2)COCH(3))](NO(3))(3) (6) were prepared by treatment of platinum blue complex [Pt(4)(NH(3))(8)((CH(3))(3)CCONH)(4)](NO(3))(5) (2) with acetophenone, 3-pentanone, and acetylacetone, respectively, in the presence of concentrated HNO(3). The structures of complexes 4 and 6 have been confirmed by X-ray diffraction analysis, which revealed that the C-H bonds of the methyl groups in acetophenone and acetylacetone have been cleaved and Pt(III)-C bonds are formed. Formation of diketonylplatinum(III) complex 6 provides a novel example of the C-H bond activation not at the central alpha-C-H but at the terminal methyl of acetylacetone. Reaction with butanone having unsymmetrical alpha-H atoms led to two types of ketonylplatinum(III) complexes [Pt(2)((CH(3))(3)CCONH)(2)(NH(3))(4)(CH(CH(3))COCH(3))](NO(3))(3) (7a) and [Pt(2)((CH(3))(3)CCONH)(2)(NH(3))(4)(CH(2)COCH(2)CH(3))](NO(3))(3) (7b) at a molar ratio of 1.7 to 1 corresponding to the C-H bond activation of methylene and methyl groups, respectively. Use of 3-methyl-2-butanone instead of butanone gave complex [Pt(2)((CH(3))(3)CCONH)(2)(NH(3))(4)(CH(2)COCH(CH(3))(2))](NO(3))(3) (8) as a sole product via C-H bond activation in the alpha-methyl group. The reactivity of the ketonylplatinum(III) dinuclear complexes toward nucleophiles, such as H(2)O and HNEt(2), was examined. The alpha-hydroxyl- and alpha-amino-substituted ketones were generated in the reactions of [Pt(2)((CH(3))(3)CCONH)(2)(NH(3))(4)(CH(2)COCH(3))](NO(3))(3) (1), 5, and a mixture of 7a and 7b with water and amine, which indicates that the carbon atom in the ketonyl group bound to the Pt(III) atom can receive a nucleophilic attack. The high electrophilicity of the ketonylplatinum(III) complexes can be accounted for by the high electron-withdrawing ability of the platinum(III) atom. A competition between the radical and electrophilic displacement pathways was observed directly in the C-H bond activation reaction with butanone giving complexes 7a and 7b. Addition of a radical trapping agent suppressed the radical pathway and gave complex 7b as the predominant product. On the contrary, 7a was formed as the main product when the reaction solution was irradiated by mercury lamp light. These results together with other mechanistic studies demonstrate that complex 7a was produced via a radical process, whereas complex 7b is produced via electrophilic displacement of a proton by the Pt(III) atom. The competitive processes were further observed in the reactions of platinum blue complex 2 with a mixture of acetone and 3-pentanone in the presence of HNO(3). The relative molar ratio of acetonyl complex 1 to pentanoyl complex 5 was 3 to 1 under room light, whereas formation of complex 5 was almost suppressed when the reaction was carried out in the dark with the addition of a radical trapping agent.  相似文献   

9.
The dinuclear Mn(II) complexes of bis(2-pyridylmethyl)amine (dpa) reacted with H(2)O(2) producing a fluorescent dioxodimanganese(III,IV) intermediate [(dpa)Mn(2)Cl(2)(μ-O(2))(OHdpa)](3+), which was characterized by IR, UV, ESR, ES-MS and fluorescence spectra. ES-MS data show that this intermediate could bind an acetone molecule forming dioxodimanganese(III,IV)-acetone adduct [(dpa)Mn(2)Cl(2)(μ-O)(CH(3)COCH(3))(OHdpa)](3+). The emission of dioxodimanganese(III,IV)-acetone at 378 nm was stronger than that of dioxodimanganese(III,IV) complex. Excess acetone molecules promoted the intramolecular C-H oxidation and the formation of one dimensional chain Mn(II) complex [(2-picolinic-acid)Mn(H(2)O)(2)Cl(O)](n) through possible intramolecular oxygen transfer reaction.  相似文献   

10.
Reaction of the platinum(III) dimeric complex [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(NO(3))(2)](NO(3))(2) (1), prepared in situ by the oxidation of the platinum blue complex [Pt(4)(NH(3))(8)((CH(3))(3)CCONH)(4)](NO(3))(5) (2) with Na(2)S(2)O(8), with terminal alkynes CH[triple bond]CR (R = (CH(2))(n)CH(3) (n = 2-5), (CH(2))(n)CH(2)OH (n = 0-2), CH(2)OCH(3), and Ph), in water gave a series of ketonyl-Pt(III) dinuclear complexes [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(CH(2)COR)](NO(3))(3) (3, R = (CH(2))(2)CH(3); 4, R = (CH(2))(3)CH(3); 5, R = (CH(2))(4)CH(3); 6, R = (CH(2))(5)CH(3); 7, R = CH(2)OH; 8, R = CH(2)CH(2)OH; 9, R = (CH(2))(2)CH(2)OH; 10, R = CH(2)OCH(3); 11, R = Ph). Internal alkyne 2-butyne reacted with 1 to form the complex [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(CH(CH(3))COCH(3))](NO(3))(3) (12). These reactions show that Pt(III) reacts with alkynes to give various ketonyl complexes. Coordination of the triple bond to the Pt(III) atom at the axial position, followed by nucleophilic attack of water and hydrogen shift from the enol to keto form, would be the mechanism. The structures of complexes 3.H(2)O, 7.0.5C(3)H(4)O, 9, 10, and 12 have been confirmed by X-ray diffraction analysis. A competitive reaction between equimolar 1-pentyne and 1-pentene toward 1 produced complex 3 and [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(CH(2)CH(OH)CH(2)CH(2)CH(3))](NO(3))(3) (14) at a molar ratio of 9:1, suggesting that alkyne is more reactive than alkene. The ketonyl-Pt(III) dinuclear complexes are susceptible to nucleophiles, such as amines, and the reactions with secondary and tertiary amines give the corresponding alpha-amino-substituted ketones and the reduced Pt(II) complex quantitatively. In the reactions with primary amines, the once formed alpha-amino-substituted ketones were further converted to the iminoketones and diimines. The nucleophilic attack at the ketonyl group of the Pt(III) complexes provides a convenient means for the preparation of alpha-aminoketones, alpha-iminoketones, and diimines from the corresponding alkynes and amines.  相似文献   

11.
The preparation and characterization of three new macrocyclic ligands with pendant arms based on the [2+2] condensation of isophthalaldehyde and the corresponding triamine substituted at the central N-atom is reported. None of these new macrocyclic ligands undergo any equilibrium reaction, based on imine hydrolysis to generate [1+1] macrocyclic formation or higher oligomeric compounds, such as [3+3], [4+4], etc., at least within the time scale of days. This indicates the stability of the newly generated imine bond. In sharp contrast, the reaction of the [2+2] macrocyclic Schiff bases with Cu(I) generates the corresponding dinuclear Cu(I) complexes [Cu(2)(L(1))](2+), 1(2+); [Cu(2)(L(2))(CH(3)CN)(2)](2+), 2(2+); and [Cu(2)(L(3))(CH(3)CN)(2)](2+), 3(2+), together with their trinuclear Cu(I) homologues [Cu(3)(L(4))](3+), 4(3+); [Cu(3)(L(5))(CH(3)CN)(3)](3+), 5(3+); and [Cu(3)(L(6))(CH(3)CN)(3)](3+), 6(3+), where the [2+2] ligand has undergone an expansion to the corresponding [3+3] Schiff base that is denoted as L(4), L(5), or L(6). The conditions under which the dinuclear and trinuclear complexes are formed were analyzed in terms of solvent dependence and synthetic pathways. The new complexes are characterized in solution by NMR, UV-vis, and MS spectroscopy and in the solid state by X-ray diffraction analysis and IR spectroscopy. For the particular case of the L(2) ligand, MS spectroscopy is also used to monitor the metal assisted transformation where the dinuclear complex 2(2+) is transformed into the trinuclear complex 5(3+). The Cu(I) complexes described here, in general, react slowly (within the time scale of days) with molecular oxygen, except for the ones containing the phenolic ligands 2(2+) and 5(3+) that react a bit faster.  相似文献   

12.
[Ag(UO(2))(3) (OAc)(9)][Zn(H(2)O)(4)(CH(3)CH(2)OH)(2)] (, OAc = CH(3)COO(-)) crystallized from an ethanol solution and its structure was determined by IR spectroscopy, elemental analysis, (1)H NMR, (13)C NMR and X-ray crystallography; it is composed of [Zn(H(2)O)(4)(CH(3)CH(2)OH)(2)](2+) cations and [Ag(UO(2))(3)(OAc)(9)](2-) anions in which triuranyl [(UO(2))(OAc)(3)](3) clusters are linked by the Ag ion.  相似文献   

13.
Three 5,5'-dicarbamate-2,2'-bipyridine ligands (L = L(1)-L(3)) bearing ethyl, isopropyl or tert-butyl terminals, respectively, on the carbamate substituents were synthesized. Reaction of the ligands L with the transition metal ions M = Fe(2+), Cu(2+), Zn(2+) or Ru(2+) gave the complexes ML(n)X(2)·xG (1-12, n = 1-3; X = Cl, NO(3), ClO(4), BF(4), PF(6), ?SO(4); G = Et(2)O, DMSO, CH(3)OH, H(2)O), of which [Fe(L(2))(3)???SO(4)]·8.5H(2)O (2), [Fe(L(1))(3)???(BF(4))(2)]·2CH(3)OH (7), [Fe(L(2))(3)???(Et(2)O)(2)](BF(4))(2)·2CH(3)OH (8), [ZnCl(2)(L(1))][ZnCl(2)(L(1))(DMSO)]·2DMSO (9), [Zn(L(1))(3)???(NO(3))(2)]·2H(2)O (10), [Zn(L(2))(3)???(ClO(4))(Et(2)O)]ClO(4)·Et(2)O·2CH(3)OH·1.5H(2)O (11), and [Cu(L(1))(2)(DMSO)](ClO(4))(2)·2DMSO (12) were elucidated by single-crystal X-ray crystallography. In the complexes ML(n)X(2)·xG the metal ion is coordinated by n = 1, 2 or 3 chelating bipyridine moieties (with other anionic or solvent ligands for n = 1 and 2) depending on the transition metal and reaction conditions. Interestingly, the carbamate functionalities are involved in hydrogen bonding with various guests (anions or solvents), especially in the tris(chelate) complexes which feature the well-organized C(3)-clefts for effective guest inclusion. Moreover, the anion binding behavior of the pre-organized tris(chelate) complexes was investigated in solution by fluorescence titration using the emissive [RuL(3)](2+) moiety as a probe. The results show that fluorescent recognition of anion in solution can be achieved by the Ru(II) complexes which exhibit good selectivities for SO(4)(2-).  相似文献   

14.
Wei QH  Yin GQ  Zhang LY  Shi LX  Mao ZW  Chen ZN 《Inorganic chemistry》2004,43(11):3484-3491
A series of Ag(I)-Cu(I) heteronuclear alkynyl complexes were prepared by reaction of polymeric (MCCC(6)H(4)R-4)(n)() (M = Cu(I) or Ag(I); R = H, CH(3), OCH(3), NO(2), COCH(3)) with [M'(2)(mu-Ph(2)PXPPh(2))(2)(MeCN)(2)](ClO(4))(2) (M' = Ag(I) or Cu(I); X = NH or CH(2)). Heterohexanuclear complexes [Ag(4)Cu(2)(mu-Ph(2)PNHPPh(2))(4)(CCC(6)H(4)R-4)(4)](ClO(4))(2) (R = H, 1; CH(3), 2) were afforded when X = NH, and heterooctanuclear complexes [Ag(6)Cu(2)(micro-Ph(2)PCH(2)PPh(2))(3)(CCC(6)H(4)R-4)(6)(MeCN)](ClO(4))(2) (R = H, 3; CH(3), 4; OCH(3), 5; NO(2), 6) were isolated when X = CH(2). Self-assembly reaction between (MCCC(6)H(4)COCH(3)-4)(n) and [M'(2)(mu-Ph(2)PCH(2)PPh(2))(2)(MeCN)(2)](ClO(4))(2), however, gave heterohexadecanuclear complex [Ag(6)Cu(2)(micro-Ph(2)PCH(2)PPh(2))(3)(CCC(6)H(4)COCH(3)-4)(6)](2)(ClO(4))(4) (7). The heterohexanuclear complexes 1 and 2 show a bicapped cubic skeleton (Ag(4)Cu(2)C(4)) consisting of four Ag(I) and two Cu(I) atoms and four acetylide C donors. The heterooctanuclear complexes 3-6 exhibit a waterwheel-like structure that can be regarded as two Ag(3)Cu(CCC(6)H(5))(3) components put together by three bridging Ph(2)PCH(2)PPh(2) ligands. The heterohexadecanuclear complex 7 can be viewed as a dimer of heterooctanuclear complex [Ag(6)Cu(2)(micro-Ph(2)PCH(2)PPh(2))(3)(CCC(6)H(4)COCH(3)-4)(6)](ClO(4))(2) through the silver and acetyl oxygen (Ag-O = 2.534 (4) A) linkage between two waterwheel-like Ag(6)Cu(2) units. All of the complexes show intense luminescence in the solid states and in fluid solutions. The microsecond scale of lifetimes in the solid state at 298 K reveals that the emission is phosphorescent in nature. The emissive state in compounds 1-5 is likely derived from a (3)LMCT (CCC(6)H(4)R-4 --> Ag(4)Cu(2) or Ag(6)Cu(2)) transition, mixed with a metal cluster-centered (d --> s) excited state. The lowest lying excited state in compounds 6 and 7 containing electron-deficient 4-nitrophenylacetylide and 4-acetylphenylacetylide, respectively, however, is likely dominated by an intraligand (3)[pi --> pi] character.  相似文献   

15.
A mixed-valent uranium(IV,VI) diphosphonate, (H(3)O)(2)(UO(2))(3)U(H(2)O)(2)[CH(2)(PO(3))(2)](3)·6H(2)O (UC1P2S), has been synthesized under hydrothermal conditions. S-2-butanol was used to reduce uranium VI to IV. The tetravalent uranium centers adopt eight-coordinate geometries, while hexavalent uranyl units are all tetragonal bipyramids. The UV-vis-NIR spectrum of UC1P2S shows absorption features for both U(VI) and U(IV).  相似文献   

16.
The preparation of two new families of hexanuclear rhenium cluster complexes containing benzonitrile and phenyl-substituted tetrazolate ligands is described. Specifically, we report the preparation of a series of cluster complexes with the formula [Re(6)Se(8)(PEt(3))(5)L](2+) where L = benzonitrile, p-aminobenzonitrile, p-methoxybenzonitrile, p-acetylbenzonitrile, or p-nitrobenzonitrile. All of these complexes undergo a [2 + 3] cycloaddition with N(3)(-) to generate the corresponding [Re(6)Se(8)(PEt(3))(5)(5-(p-X-phenyl)tetrazol-2-yl)](+) (or [Re(6)Se(8)(PEt(3))(5)(2,5-p-X-phenyltetrazolate)](+)) cluster complexes, where X = NH(2), OMe, H, COCH(3), or NO(2). Crystal structure data are reported for three compounds: [Re(6)Se(8)(PEt(3))(5)(p-acetylbenzonitrile)](BF(4))(2)?MeCN, [Re(6)Se(8)(PEt(3))(5)(2,5-phenyltetrazolate)](BF(4))?CH(2)Cl(2), and [Re(6)Se(8)(PEt(3))(5)(2,5-p-aminophenyltetrazolate)](BF(4)). Treatment of [Re(6)Se(8)(PEt(3))(5)(2,5-phenyltetrazolate)](BF(4)) with HBF(4) in CD(3)CN at 100 °C leads to protonation of the tetrazolate ring and formation of [Re(6)Se(8)(PEt(3))(5)(CD(3)CN)](2+). Surprisingly, alkylation of the phenyl and methyl tetrazolate complexes ([Re(6)Se(8)(PEt(3))(5)(2,5-N(4)CPh)](BF(4)) and [Re(6)Se(8)(PEt(3))(5)(1,5-N(4)CMe)](BF(4))) with methyl iodide and benzyl bromide, leads to the formation of mixtures of 1,5- and 2,5-disubstituted tetrazoles.  相似文献   

17.
New catalysts for the isospecific polymerization of 1-hexene based on cationic zirconium complexes incorporating the tetradentate fluorous dialkoxy-diamino ligands [OC(CF(3))(2)CH(2)N(Me)(CH(2))(2)N(Me)CH(2)C(CF(3))(2)O](2-) [(ON(2)NO)(2-)] and [OC(CF(3))(2)CH(2)N(Me)(1R,2R-C(6)H(10))N(Me)CH(2)C(CF(3))(2)O](2-) [(ON(Cy)NO)(2-)] have been developed. The chiral fluorous diamino-diol [(ON(Cy)NO)H(2), 2] was prepared by ring-opening of the fluorinated oxirane (CF(3))(2)COCH(2) with (R,R)-N,N'-dimethyl-1,2-cyclohexanediamine. Proligand 2 reacts cleanly with [Zr(CH(2)Ph)(4)] and [Ti(OiPr)(4)] precursors to give the corresponding dialkoxy complexes [Zr(CH(2)Ph)(2)(ON(Cy)NO)] (3) and [Ti(OiPr)(2)(ON(Cy)NO)] (4), respectively. An X-ray diffraction study revealed that 3 crystallizes as a 1:1 mixture of two diastereomers (Lambda-3 and Delta-3), both of which adopt a distorted octahedral structure with trans-O, cis-N, and cis-CH(2)Ph ligands. The two diastereomers Lambda-3 and Delta-3 adopt a C(2)-symmetric structure in toluene solution, as established by NMR spectroscopy. Cationic complexes [Zr(CH(2)Ph)(ON(2)NO)(THF)(n)](+) (n=0, anion=[B(C(6)F(5))(4)](-), 5; n=1, anion=[PhCH(2)B(C(6)F(5))(3)](-), 6) and [Zr(CH(2)Ph)(ON(Cy)NO)(THF)](+)[PhCH(2)B(C(6)F(5))(3)](-) (7) were generated from the neutral parent precursors [Zr(CH(2)Ph)(2)(ON(2)NO)] (H) and [Zr(CH(2)Ph)(2)(ON(Cy)NO)] (3), and their possible structures were determined on the basis of (1)H, (19)F, and (13)C NMR spectroscopy and DFT methods. The neutral zirconium complexes H and 3 (Lambda-3/Delta-3 mixture), when activated with B(C(6)F(5))(3) or [Ph(3)C](+)[B(C(6)F(5))(4)](-), catalyze the polymerization of 1-hexene with overall activities of up to 4500 kg PH mol Zr(-1) h(-1), to yield isotactic-enriched (up to 74 % mmmm) polymers with low-to-moderate molecular weights (M(w)=4800-47 200) and monodisperse molecular-weight distributions (M(w)/M(n)=1.17-1.79).  相似文献   

18.
A four-step synthesis for 4,6-bis(diphenylphosphinoylmethyl)dibenzofuran (4) from dibenzofuran and a two-step synthesis for 4,6-bis(diphenylphosphinoyl)dibenzofuran (5) are reported along with coordination chemistry of 4 with In(III), La(III), Pr(III), Nd(III), Er(III), and Pu(IV) and of 5 with Er(III). Crystal structure determinations for the ligands, 4·CH(3)OH and 5, the 1:1 complexes [In(4)(NO(3))(3)], [Pr(4)(NO(3))(3)(CH(3)CN)]·0.5CH(3)CN, [Er(4)(NO(3))(3)(CH(3)CN)]·CH(3)CN, [Pu(4)Cl(4)]·THF and the 2:1 complex [Nd(4)(2)(NO(3))(2)](2)(NO(3))(2)·(H(2)O)·4(CH(3)OH) are described. In these complexes, ligand 4 coordinates in a bidentate POP'O' mode via the two phosphine oxide O-atoms. The dibenzofuran ring O-atom points toward the central metal cations, but in every case it is more than 4 ? from the metal. A similar bidentate POP'O' chelate structure is formed between 5 and Er(III) in the complex, {[Er(5)(2)(NO(3))(2)](NO(3))·4(CH(3)OH)}(0.5), although the nonbonded Er···O(furan) distance is reduced to ~3.6 ?. The observed bidentate chelation modes for 4 and 5 are consistent with results from molecular mechanics computations. The solvent extraction performance of 4 and 5 in 1,2-dichloroethane for Eu(III) and Am(III) in nitric acid solutions is described and compared against the extraction behavior of n-octyl(phenyl)-N,N-diisobutylcarbamoylmethyl phosphine oxide (OΦDiBCMPO) measured under identical conditions.  相似文献   

19.
The tripodal amino-phosphinate ligands, tris(4-(phenylphosphinato)-3-benzyl-3-azabutyl)amine (H(3)ppba.2HCl.H(2)O) and tris(4-(phenylphosphinato)-3-azabutyl)amine (H(3)ppa.HCl.H(2)O) were synthesized and reacted with Al(3+), Ga(3+), In(3+) and the lanthanides (Ln(3+)). At 2 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(3)ppba)(2)](3+)(M = Al(3+), Ga(3+), In(3+), Ho(3+)-Lu(3+)) were isolated. The bicapped [Ga(H(3)ppba)(2)](NO(3))(2)Cl.3CH(3)OH was structurally characterized and was shown indirectly by various techniques to be isostructural with the other [M(H(3)ppba)(2)](3+) complexes. Also, at 2 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(4)ppba)(2)](5+)(M = La(3+)-Tb(3+)) were characterized, and the X-ray structure of [Gd(H(4)ppba)(2)](NO(3))(4)Cl.3CH(3)OH was determined. At 1 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(4)ppba)](4+)(M = La(3+)-Er(3+)) were isolated and characterized. Elemental analysis and spectroscopic evidence supported the formation of a 1 : 1 monocapped complex. Reaction of 1 : 1 ratios of H(3)ppa with Ln(3+) and In(3+) yielded complexes of the type [M(H(3)ppa)](3+)(M = La(3+)-Yb(3+)) but with Ga(3+), complex of the type [Ga(ppa)].3H(2)O was obtained. Reaction of 1 : 1 ratios of H(3)ppa with Ln(3+) and In(3+) yielded complexes of the type [M(H(3)ppa)](3+)(M = La(3+)-Yb(3+)) but with Ga(3+) a neutral complex [Ga(ppa)].3H(2)O was obtained. The formation of an encapsulated 1 : 1 complex is supported by elemental analysis and spectroscopic evidence.  相似文献   

20.
The carbophosphazene and cyclophosphazene hydrazides, [{NC(N(CH(3))(2))}(2){NP{N(CH(3))NH(2)}(2)}] (1) and [N(3)P(3)(O(2)C(12)H(8))(2){N(CH(3))NH(2)}(2)] were condensed with o-vanillin to afford the multisite coordination ligands [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-OH)(m-OCH(3))}(2)}] (2) and [{N(2)P(2)(O(2)C(12)H(8))(2)}{NP{N(CH(3))N═CH-C (6)H(3)-(o-OH)(m-OCH(3))}(2)}] (3), respectively. These ligands were used for the preparation of heterometallic complexes [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuCa(NO(3))(2)}] (4), [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{Cu(2)Ca(2)(NO(3))(4)}]·4H(2)O (5), [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuDy(NO(3))(4)}]·CH(3)COCH(3) (6), [{NP(O(2)C(12)H(8))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuDy(NO(3))(3)}] (7), and [{NP(O(2)C(12)H(8))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuTb(NO(3))(3)}] (8). The molecular structures of these compounds reveals that the ligands 2 and 3 possess dual coordination pockets which are used to specifically bind the transition metal ion and the alkaline earth/lanthanide metal ion; the Cu(2+)/Ca(2+), Cu(2+)/Tb(3+), and Cu(2+)/Dy(3+) pairs in these compounds are brought together by phenoxide and methoxy oxygen atoms. While 4, 6, 7, and 8 are dinuclear complexes, 5 is a tetranuclear complex. Detailed magnetic properties on 6-8 reveal that these compounds show weak couplings between the magnetic centers and magnetic anisotropy. However, the ac susceptibility experiments did not reveal any out of phase signal suggesting that in these compounds slow relaxation of magnetization is absent above 1.8 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号