首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
田坚  刘仁月  刘珍  余长林  刘敏超 《催化学报》2017,(12):1999-2008
半导体光催化具有无毒、无污染、低能耗等优点,广泛应用于水溶液中染料、药物分子的降解等.其中Ag_2CO_3半导体因其较窄的带隙能和显著的可见光吸收性能而引起广泛关注.但是Ag_2CO_3在光照下极不稳定.目前,主要是通过引入其它半导体等材料与其进行复合来提其催化活性与稳定性.本文以一种具有良好的水溶性以及能够加快电子转移能力的碳量子点(CQDs)和氮掺杂的碳量子点(NCQDs)作为复合材料,利用简单的沉淀法制备出了CQDs/Ag_2CO_3、NCQDs/Ag_2CO_3等复合材料.结果表明,CQDs和NCQDs的存在能够很好的提升光催化性能.而且发现NCQDs除了具有碳量子点的特性外,还能够诱导电荷离域,更加有效的促进电子的转移.利用X射线衍射、扫描电镜、透射电镜、N_2物理吸附、元素成像、紫外-可见光漫反射吸收光谱、红外光谱以及光电流和交流阻抗测试等手段对所制备的CQDs/Ag_2CO_3和NCQDs/Ag_2CO_3进行了表征.结果表明,量子点的存在能够有效增大Ag_2CO_3的比表面积.紫外-可见漫反射吸收结果说明,量子点的存在还能够在一定程度上增大样品的可见光吸收性能.而光电流和交流阻抗测试结果证明,量子点的存在能显著降低载流子的迁移阻力,提高光生电子与空穴的分离效率.在量子点相同含量下,NCQDs能够更加有效的转移载流子.以350 W氙灯加可见光滤光片(λ≥420 nm)作为光源进行光催化降解苯酚的性能测试.结果表明,NCQDs/Ag_2CO_3比CQDs/Ag_2CO_3表现出更高的活性,其对苯酚的降解率约为后者的2倍;同时NCQDs/Ag_2CO_3还具有更佳的稳定性能.自由基捕获试验说明,在光催化过程中,主要的活性物种为?OH与?O_2~-.NCQDs能够提高Ag_2CO_3活性与稳定性的原因在于,NCQDs能够提高了催化剂的比表面积,增强光催化剂的光吸收性能.另外NCQDs能够比CQDs更有效的转移电子,提高光生e~-和h~+的分离效率,产生更多的光催化降解活性物种.  相似文献   

2.
Ag_2CO_3是一种典型的银基半导体,可在可见光照射下降解各种有机染料,但制备成本高,光腐蚀严重,稳定性差,难以循环利用等,因而限制了它的实际应用.针对这些问题,目前多数的改进措施是构建异质结,有效的分离光生电子与空穴来提高Ag_2CO_3的光催化性能.比如典型的异质结光催化剂有TiO_2/Ag_2CO_3,Ag_2CO_3/Zn O,Ag_2O/Ag_2CO_3和Ag X/Ag_2CO_3等.也有在表面化学沉积,光化学还原Ag等贵金属形成等离子体等方式提高其光催化性能,但是很少通过特殊形貌控制以提高Ag_2CO_3的光催化性能.最近的研究表明,由于多尺度微球结构催化剂具有高效的光捕能力,同时具有比表面积大、易沉降,良好的物质传输能力和表面的渗透性,因而在液相光催化反应中具有明显的优势.因此,我们期望制备出一个多尺度微球结构Ag_2CO_3光催化剂.CaMg(CO_3)_2是一种具有微球结构的半导体,它与Ag_2CO_3有相同的阴离子结构,但是两者在水溶液中的溶解度相差较大,利用这个特性理论上可以将两个不同的半导体结合在一起,得到一种新型的复合微球.本文以CaMg(CO_3)_2微球为硬模板,通过简单的离子交换成功制备了粒径约为10mm的CaMg(CO_3)_2@Ag_2CO_3微球.利用X射线衍射、N_2物理吸附、扫描电镜、傅里叶变换红外光谱和紫外-可见漫反射吸收光谱、光电流等手段对在不同反应时间与温度下制得的CaMg(CO_3)_2与Ag_2CO_3的复合物进行了表征.结果表明,在40°C下Ag~+与Ca~(2+)、Mg~(2+)离子交换4 h后,得到了一种多尺度CaMg(CO_3)_2@Ag_2CO_3复合微球.此时,微球中Ag_2CO_3的含量约为2.56%.结果表明,这种具有多尺度结构的复合微球能够增强可见光的吸收.电化学阻抗测试和光电流测试表明,CaMg(CO_3)_2核的存在可以降低光生载流子的迁移阻力,进而促进光生电子与空穴的分离.在光降解酸性橙II的测试中,核壳结构的CaMg(CO_3)_2@Ag_2CO_3复合微球表现出了更高的催化活性,而且具有更好的循环使用性能.同时,相对于纯Ag_2CO_3光催化剂来说,CaMg(CO_3)_2@Ag_2CO_3复合微球制备的成本大幅度降低.ESR测试证明了?OH为CaMg(CO_3)_2@Ag_2CO_3复合微球光催化过程中的主要活性物质.  相似文献   

3.
采用水热法制备粒径为1~2μm的BiVO_4微米片,然后在微米片表面沉积不同含量的Ag_2CO_3颗粒,制备Ag_2CO_3/BiVO_4复合微米片光催化剂。利用X射线粉末衍射(XRD)、扫描电镜(SEM)、红外光谱(FTIR)、紫外-可见漫反射光谱(UV-Vis DRS)、光致发光(PL)光谱、瞬态光电流-时间响应对催化剂进行表征。以可见光为光源,罗丹明B为降解对象进行光催化活性测试。结果表明,复合适量Ag_2CO_3有利于提高光催化剂的比表面积,改善催化剂的表面性能。活性测试结果表明,当复合10%(w/w)Ag_2CO_3时,Ag_2CO_3/BiVO_4光催化活性最佳,比纯BiVO_4提高4.4倍。光致发光(PL)光谱、瞬态光电流-时间响应测试结果表明,复合Ag_2CO_3能有效抑制光生电子与空穴的复合。自由基捕获实验结果表明,该体系的活性氧物质为空穴和羟基自由基。Ag_2CO_3/BiVO_4复合光催化剂活性提高的原因,是较宽带隙的Ag_2CO_3与较窄带隙的BiVO_4形成的异质结有效抑制了光生电子与空穴的复合,同时两者适宜的能带结构保证产生更多的空穴,从而具有更强的氧化能力。  相似文献   

4.
作为一种绿色技术,半导体光催化氧化广泛应用于环境污染物治理和太阳能转化领域.高效、稳定、可回收利用催化剂的开发是光催化技术发展的一个重要方向.Ag系半导体光催化剂因在可见光分解水制氢及降解有机污染物等方面表现出优异的催化性能而广受关注.然而,该催化剂失活快,制约了其应用.因此,提高Ag系半导体材料的光催化稳定性成为近年研究热点.在各种Ag基光催化剂中,Ag_3PO_4光催化剂因其在可见光下光氧化水产生O_2以及有机染料的光催化分解中有着高的量子效率,引起了人们广泛关注.如何进一步提升Ag_3PO_4光催化剂性能及在光催化过程中的稳定性成为研究焦点,包括Ag_3PO_4光催化剂的特殊形貌和晶体结构控制生长以及复合材料控制制备.但是Z型Ag_3PO_4基可见光催化剂的构筑仍然是一个挑战.本文利用Ag_2MoO_4和Ag_3PO_4的溶液相反应法合成了Z型Ag_3PO_4/Ag_2MoO_4复合光催化剂,通过Ag_3PO_4/Ag_2MoO_4异质结光催化剂在可见光下降解罗丹明B(RhB)、亚甲基橙(MO)、亚甲基蓝(MB)和苯酚研究了其光催化性能,采用X射线衍射(XRD)、能谱、傅立叶变换红外光谱(FT-IR)、拉曼光谱、场发射扫描电子显微镜(FE-SEM)以及紫外可见漫反射光谱(UV-vis)等手段表征了该催化剂.XRD,FTIR和拉曼光谱结果表明,复合材料由Ag_3PO_4,Ag_2MoO_4和单质银组成,表面成功合成了Z构型Ag_3PO_4/Ag/Ag_2MoO_4复合材料.SEM结果发现纯Ag_3PO_4是规则的球状,纯Ag_2MoO_4则是多面体状块的颗粒,在Ag_3PO_4/Ag_2MoO_4复合材料中可以看到规则的球状体Ag_3PO_4和Ag_2MoO_4纳米颗粒,并且随着Ag_2MoO_4含量的增加,Ag_3PO_4颗粒的尺寸逐渐减小.UV-vis结果发现Ag_2MoO_4的加入拓展了复合材料对可见光的吸收范围.光催化性能测试结果表明,8%Ag_2MoO_4/Ag_3PO_4在可见光下具有优异的光催化性能:可见光照射5 min,RhB,MO和MB的降解效率分别可达95%,97%和90%.复合材料样品经过4个循环实验后,其降解RhB的效率仍然保持在84%,证明了其具有较高的稳定性.为了进一步研究Ag_3PO_4/Ag_2MoO_4的光催化机理,我们用对苯醌、乙二胺四乙酸二钠和丁醇进行了捕捉剂实验.结果表明,超氧自由基和光生空穴在降解有机染料过程中起主要作用.通过光电流测试、复合材料价带导带位置计算以及循环过程样品XRD分析并结合文献结果认为,Z构型Ag_3PO_4/Ag/Ag_2MoO_4异质结光催化体系以及可见光照射初期金属Ag纳米颗粒的生成是其具有高光催化活性和稳定性的原因.  相似文献   

5.
采用NaBH_4还原法合成了系列Pt沉积的Ag_2CO_3复合光催化剂。通过在可见光照射下降解甲基橙研究沉积不同含量的Pt对Ag_2CO_3光催化性能的影响。应用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电镜(TEM)、光电子能谱(XPS)、傅立叶变换红外光谱(FT-IR)、光致发光光谱(PL)、紫外可见漫反射吸收光谱(DRS)、光电流(PC)和N_2物理吸附等研究了沉积Pt纳米颗粒对Ag_2CO_3纳米晶的物理化学性质的影响。结果表明,沉积质量分数为0.1%~0.5%的Pt,可使Ag_2CO_3的活性提升3倍以上,同时光催化剂的稳定性得到极大改善。Pt/Ag_2CO_3光催化性能大幅提升的主要原因是,沉积少量的Pt可以增强Ag_2CO_3对可见光的吸收,同时增大Ag_2CO_3的比表面积和表面羟基的数量;另外,沉积在Ag_2CO_3表面的Pt粒子可以承担电子俘获中心的作用,使Ag_2CO_3中光激发产生的电子(e~-)有效地转移到Pt上,加速光生电子-空穴对的分离速率,产生更多的光催化活性自由基,在提升光催化活性的同时,减少Ag_2CO_3中的Ag~+被光生电子(e~-)还原的几率,增强Ag_2CO_3的抗光腐蚀能力。  相似文献   

6.
Ag_3PO_4由于具有独特的活性而被广泛应用于光催化领域.然而,由于其光生电子和空穴的快速复合, Ag_3PO_4的光催化性能在几个循环之后显著下降,光腐蚀限制了它的实际应用.因此,亟需设计一种新型的复合光催化剂来抑制电子空穴对的快速复合.而Z型复合光催化剂可综合不同光催化剂的优点,克服单一光催化剂的缺点.Z方案体系使用两个窄带隙的催化剂取代宽带隙的光催化剂,从而可以捕获更多的光子.并且光催化剂的氧化还原反应分开进行,可以有效地防止电子和空穴的复合,从而大大提高复合光催化剂的性能.本文通过微波水热法和简单搅拌法成功地制备了Z机制WO_3(H_2O)_(0.333)/Ag_3PO_4复合材料.采用X射线衍射、扫描电子显微镜、X射线光电子能谱、N2吸附-解吸等温线、比表面积测定、紫外-可见光谱和光电流曲线等方法对WO_3(H_2O)_(0.333)/Ag_3PO_4复合材料进行了表征.通过这些表征,我们确定了所研究的光催化剂物相高度匹配;确定了光催化剂的形貌:确定了复合光催化剂是复合物,而不是简单的混合物;确定了光催化剂中光生电子和空穴的结合、分离效率;研究了光催化剂的吸收边以及带隙.光催化降解测试发现, WO_3(H_2O)_(0.333)/Ag_3PO_4复合材料在可见光下表现出优异的催化性能,这主要归因于WO_3(H_2O)_(0.333)/Ag_3PO_4的协同作用.其中15%WO_3(H_2O)_(0.333)/Ag_3PO_4的光催化活性最高,在4min内几乎将30m L20mol/L的次甲基蓝完全降解.并且,复合材料的稳定性也得到很大提升.经过5次循环反应后, 15%WO_3(H_2O)_(0.333)/Ag_3PO_4的降解效率仍可以维持在88.2%.相比之下,纯Ag_3PO_4的降解效率仅为20.2%.这表明添加WO_3(H_2O)_(0.333)可以显著提高Ag_3PO_4的耐光腐蚀性.最后,我们详细研究了Z-机制机理.在可见光照射下, Ag_3PO_4和WO_3(H_2O)_(0.333)的表面产生电子-空穴对.WO_3(H_2O)_(0.333)的光生电子首先转移到其导带,然后迁移到Ag_3PO_4的价带中与空穴结合.因此, Ag_3PO_4的光生电子和空穴被有效分离,光生电子连续转移到Ag_3PO_4的导带界面.这样, Ag_3PO_4的导带界面上积累了大量的电子,并且在WO_3(H_2O)_(0.333)的价带界面中积累了大量的空穴.在空穴的作用下,–OH与h~+反应生成·OH,·OH与污染物甲基蓝反应生成CO_2和H_2O.同时,大量的H~+和O_2与电子反应,在Ag_3PO_4的导带界面处产生H_2O_2.之后, H_2O_2与电子反应产生·OH,·OH与甲基蓝反应形成CO_2和H_2O.这样,光生电子和空穴连续分离,大大提高了光催化反应速度,最终催化剂的光催化活性得到极大的提高.  相似文献   

7.
采用共沉淀法制备了Ag_3PO_4/NaNbO_3复合半导体光催化剂,利用X-射线衍射、X射线光电子能谱、紫外漫反射和扫描电镜等方法对合成样品进行表征.测试了样品对亚甲基蓝溶液的光催化降解活性,复合材料的催化活性远高于单体的Ag_3PO_4和NaNbO_3.  相似文献   

8.
水热法结合原位沉淀法成功制备新型磁性溴化银/磷酸银/铁酸锌(AgBr/Ag_3PO_4/ZnFe_2O_4)复合催化剂,并通过X射线衍射、能量色散X射线、场发射扫描电子显微镜、透射电子显微镜和紫外-可见漫反射光谱对其晶相结构、组成、形貌及吸光性能进行了表征。在可见光照射下,所制备的AgBr/Ag_3PO_4/ZnFe_2O_4复合催化剂光催化降解罗丹明B(RhB)的活性优于Ag_3PO_4/ZnFe_2O_4、AgBr/ZnFe_2O_4和P25 TiO_2。在酸性和碱性溶液中,AgBr/Ag_3PO_4/ZnFe_2O_4光催化剂呈现出优良光催化性能。在AgBr/Ag_3PO_4/ZnFe_2O_4体系中,光催化降解Rh B的速率随着反应体系温度的升高而增大,由阿伦尼乌斯方程计算获得反应体系活化能为31.9 k J?mol~(-1)。AgBr/Ag_3PO_4/ZnFe_2O_4复合材料优异的可见光催化活性归因于光生电荷的有效分离,所产生的超氧自由基和空穴是Rh B降解的主要活性物种。  相似文献   

9.
赵娣  张博  段召娟  李爱昌 《无机化学学报》2016,32(12):2158-2164
采用电化学方法制备Ag_2S/Ag_3PO_4/Ni复合薄膜,以扫描电子显微镜(SEM)、X射线衍射(XRD)、紫外-可见漫反射光谱(UVVis DRS)对薄膜的表面形貌、晶相结构、光谱特性及能带结构进行了表征,以罗丹明B为模拟污染物对薄膜的光催化活性和稳定性进行了测定,采用向溶液中加入活性物种捕获剂的方法对薄膜的光催化机理进行了探索。结果表明:最佳工艺制备的Ag_2S/Ag_3PO_4/Ni是由均匀的球形纳米颗粒构成的薄膜,其光催化活性明显优于纯Ag_3PO_4/Ni薄膜和纯Ag_2S/Ni薄膜,且在保持薄膜光催化活性基本不变的前提下可循环使用6次。提出了可见光下Ag_2S/Ag_3PO_4/Ni复合薄膜光催化降解罗丹明B的反应机理。  相似文献   

10.
以Na_2HPO_4和AgNO_3为原料,通过简单的离子交换法合成Ag_3PO_4,将合成的Ag_3PO_4悬浮在亚甲基蓝溶液中,用500 W的氙灯光照,通过光诱导方法制备Ag/Ag_3PO_(4 )等离子体共振复合光催化剂,以亚甲基蓝的光催化降解来评价其催化性能。利用XRD、XPS、SEM、UV-Vis DRS对催化剂进行表征,结果表明,在亚甲基蓝溶液中的前2小时,Ag_3PO_4表面的Ag~0量随光照时间增长而增加,当Ag~(0 )的含量达到14%后基本保持不变。光催化降解亚甲基蓝实验表明Ag/Ag_3PO_4体系具有高效的催化性能和良好的稳定性;对Ag/Ag_3PO_4体系的光催化机理进行了探讨,可见光区的高吸收归因于沉积在Ag_3PO_4上纳米银的等离子共振效应,同时银的加入使光生电子和光生空穴有效的分离,Ag/Ag_3PO_4体系简易的制备方法和高效稳定的催化性能可以用来在太阳光下降解有机污染物。  相似文献   

11.
通过沉积法和离子交换法成功地制备了Ag_3PO_4/Ag_2S/g-C_3N_4复合型光催化剂。利用X射线多晶粉末衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、N_2吸附-脱附等温线、紫外-可见漫反射光谱、荧光光谱等手段对样品进行了表征。通过降解罗丹明B考察其可见光催化活性及稳定性,研究了硫化钠与磷酸银物质的量的比值(n_(Na_2S)/n_(Ag_3PO_4))、g-C_3N_4添加量对所制备复合光催化材料性能的影响,同时对光催化机理进行了探讨。结果表明,随着n_(Na2S)/n_(Ag3PO4)的增加,所得复合催化材料活性先增加后降低;当n_(Na2S)/n_(Ag_3PO_4)为1.5%、g-C_3N_4与Ag_3PO_4的质量比为3∶7时制备的催化剂ASC1.5的光催化活性最好,在可见光照射下,40 min内可将罗丹明B完全降解,且5次循环使用后仍保持较高的催化活性。和Ag_3PO_4相比,Ag_3PO_4/Ag_2S/g-C_3N_4复合型光催化材料的活性与稳定性都得到明显提高,这主要归因于复合催化剂比表面积和孔结构的增加,载流子分离效率的提高。光催化机理研究表明,空穴(h~+)、超氧阴离子自由基(·O~(2-))和羟基自由基(·OH)都是光催化过程中的主要活性物种。三者作用大小依次为:h~+·O~(2-)·OH。  相似文献   

12.
利用水热法调控Na_2WO_4·2H_2O和Ag NO_3混合溶液的p H,制备了Ag_2W_2O_7纳米带,再用离子束溅射法制备了Ag_2W_2O_7@Au复合材料。以Ag_2W_2O_7@Au作为拉曼活性基底,对亚甲基蓝(M B)等6种低浓度有机染料进行检测。实验表明,其对MB分子的表面增强拉曼散射效应(SERS)有显著的增强,M B的检测限(LOD)为82.8 pmol/L,增强因子1.08!10~6。选择浓度均为1.0 nmol/L的以上染料分子的混合溶液为探针分子,发现在Ag_2W_2O_7@Au基底上只能检测到M B的特征拉曼峰。最后对M B浓度为10 nmol/L的15个同一基底不同测试点的SERS测试揭示其增强效应的相对标准偏差(RSD)均低于15%。说明Ag_2W_2O_7@Au基底是可选择性检测M B的有效SERS活性基底。  相似文献   

13.
采用自组装和化学沉淀法分别制得两种可见光驱动复合材料石墨相氮化碳/碳酸氧铋(g-C_3N_4/Bi_2O_2CO_3).采用X射线衍射光谱(XRD),紫外可见光谱、扫描电镜(SEM)、N_2吸附、电化学阻抗谱(EIS)和X射线光电子能谱(XPS)等分析手段对制备的催化剂进行了表征.结果表明,制备方法对纳米复合材料的晶相、形态及光学性能没有影响,但是影响g-C_3N_4和Bi_2O_2CO_3之间的相互作用力,导致光生电子-空穴对的分离速率存在显著差异.以可见光驱动苯酚和罗丹明B的降解实验为探针反应检测催化剂的光催化性能.实验结果表明自组装法得到的异质结催化剂中相互作用力更强,催化效果最高.O_2-是罗丹明B降解反应的主要活性物种,染料的光敏化、Bi_2O_2CO_3与g-C_3N_4综合效应,导致光生载流子电荷分离效率更高.  相似文献   

14.
TiO_2作为一种光催化剂广泛应用于各种污染物的降解.但是它较大的宽禁带(~3.2 eV)导致其很难吸收可见光,因此寻找窄禁带的具有可见光响应的半导体光催化剂成为近年来光催化研究的热点.在众多窄禁带光催化剂中,纯Ag_2S在降解污染物方面并不出色,但是作为一种窄禁带的直接带隙半导体,它在加快电子迁移和提高光量子效率方面表现出色.目前有许多高催化活性的Ag_2S异质结复合半导体光催化剂的报道,如Ag_2Mo_3O_(10)-Ag_2S,TiO_2-Ag_2S,ZnS-Ag_2S和NiO-Ag_2S等.Ag_2WO_4是一种具有新颖物理化学性质的半导体材料,在催化、传感器、抗菌和光致发光等方面有着广泛应用.但是,Ag_2WO_4的理论带隙较宽,约为3.5 eV,而且光照下Ag_2WO_4很容易产生光化学腐蚀而分解出单质银,作为光催化剂存在太阳光利用率低和稳定性较差等缺点.声化学是一种特殊纳米材料的合成方法.它主要是利用超声空化产生特殊的物理化学环境来强化化学键的生成,同时实现半导体从无定形态到固定晶型转变.本文采用超声辅助共沉淀法制备了长为0.2-1μm、直径为20-30 nm的Ag_2S/Ag_2WO_4微米棒复合光催化剂.利用X射线衍射(XRD)、N_2物理吸附、扫描电镜、透射电镜、光电子能谱、光致发光谱(PL)和紫外-可见漫反射吸收光谱(UV-vis DRS)和光电流等手段对所制Ag_2S,Ag_2WO_4和Ag_2S/Ag_2WO_4进行了表征.结果表明,合成的样品比表面积较小(2.7-3.6 m~2/g).UV-vis DRS测试表明,声化学处理能有效拓宽Ag_2S/Ag_2WO_4在可见光区的吸收范围,提高其可见光响应性能.另外,PL和光电流测试结果证实,在声化学制备的Ag_2S/Ag_2WO_4体系中,光生电子(e~-)-空穴(h~+)的复合过程被极大地限制,具有较高的e~--h~+分离效率.以金卤灯为光源进行了光催化降解染料亚甲基蓝的性能测试.结果表明,声化学合成的Ag_2S/Ag_2WO_4的反应速率常数(0.150 min-1)分别为单纯Ag2WO4(0.031 min-1)和Ag2S(0.004 min-1)的4.7和29.8倍.自由基捕获实验表明,在Ag_2S/Ag_2WO_4光催化降解甲基橙过程中主要的活性物种为超氧自由基(·O_2~-)和光生空穴(h~+).此外,声化学合成的Ag_2S/Ag_2WO_4表现出很好的光催化稳定性.循环使用3次后,该样品对亚甲基蓝的光催化活性仍高达80.4%,而纯Ag_2WO_4几乎完全失活.Ag_2S/Ag_2WO_4具有很高的光催化活性的原因,一方面是声化学处理提高了催化剂的结晶度,同时生成了独特的棒状结构;另一方面是在超声作用下,Ag_2S和Ag_2WO_4两相紧密接触形成异质结,促进了可见光的吸收和光生e~-与h~+的分离.  相似文献   

15.
Ag_2O是优良的感光材料,很少作为光催化材料,而常被用作光催化材料的共催化剂.此外,由于Ag_2O禁带宽度窄,且可有效吸收近红外光,因而不能用于全太阳光谱的光催化应用中.同时很少被用作NIR催化剂.本文中不仅研究了纳米Ag_2O颗粒的UV-Vis光催化性能,而且还系统探究了其NIR光催化活性.由于在紫外线和可见光的照射下,Ag_2O纳米颗粒易发生光还原失活,因而对Ag_2O表面硫化处理,使其表面上生长Ag_2S_2O_7层以形成Ag_2S_2O_7/Ag_2O异质结,探究了该异质结UV-Vis光催化活性及其光催化循环稳定性;同时,考察了其近红外光催化及其重复使用性能.利用沉淀法成功制备了Ag_2O纳米颗粒,并通过在其表面部分硫化处理得到Ag_2S_2O_7,成功构筑Ag_2S_2O_7/Ag_2O异质结构,并研究了该Ag_2S_2O_7/Ag_2O异质结构UV-Vis-NIR光催化降解有机污染物性能.研究表明,Ag_2O纳米颗粒在光子能量较低的NIR照射条件下具有较强的光催化活性,但UV-Vis照射下,虽然Ag_2O具有光催化活性,但易发生光还原生成单质银,降低其光催化稳定性;Ag_2S_2O_7/Ag_2O纳米异质结,虽然在UV-Vis-NIR范围内光催化活性略降于Ag_2O,但稳定性显著提高,总体来看,Ag_2S_2O_7/Ag_2O异质结构在全光谱催化方面更具优势.这主要是由于Ag_2O表面部分硫化得到的Ag_2S_2O_7纳米颗粒,且二者之间能带匹配促进了光生载流子分离,同时Ag_2O表面的Ag_2S_2O_7颗粒直接吸收能量较高的UV-Vis,进而保护内部Ag_2O,抑制了其自身还原,可显著提高Ag_2S_2O_7/Ag_2O异质结在UV-Vis-NIR催化活性及稳定性.实验结果分析表明,Ag_2S_2O_7/Ag_2O异质结纳米颗粒在UV-Vis-NIR条件下均具有稳定且高效的光催化活性,其主要原因为:(1)具有窄带隙的Ag_2O可有效拓宽该异质结的光谱吸收;(2)Ag_2S_2O_7/Ag_2O异质结能带匹配可有效促使光生载流子分离;(3)Ag_2O颗粒表面的Ag_2S_2O_7纳米颗粒可有效提高Ag_2S_2O_7/Ag_2O异质结纳米颗粒的光化学稳定性,尤其是在UV-Vis条件下的化学稳定性.Ag_2O纳米颗粒受到光照(UV-Vis-NIR)激发后产生电子-空穴对,由于Ag_2S_2O_7与Ag_2O能带位置的匹配,Ag_2O导带的光生电子注入Ag_2S_2O_7的导带;而Ag_2S_2O_7价带的光生空穴注入Ag_2O的价带.Ag_2O表面的Ag_2S_2O_7颗粒可有效捕捉电子,从而阻止Ag_2O产生的电子-空穴对复合,进而提高光催化活性;同时当光子能量较高(UV以及部分短波长的Vis)时,Ag_2O表面的Ag_2S_2O_7颗粒直接吸收该部分光能,进而保护内部Ag_2O发生自身还原,因此,Ag_2S_2O_7/Ag_2O异质结纳米颗粒在UV,Vis及NIR条件下均具有稳定且高效的光催化活性,在高效利用全光谱光催化降解有机污染物方面具有较大的潜力.  相似文献   

16.
通过原位沉积法合成了一种光催化活性强、稳定性高的MoSe_2/Ag_3PO_4复合材料。MoSe_2/Ag_3PO_4形成的异质结构能有效分离光生电子-空穴对,从而提高光催化活性。光生电子从Ag_3PO_4表面向MoSe_2的转移降低了Ag~+向金属Ag的可能性。当MoSe_2和Ag_3PO_4的质量分数为1∶5(最优组合)时,MoSe_2/Ag_3PO_4在可见光照射下30 min内降解RhB效率达98%,并且经过4次重复试验,其可见光照射下RhB降解效率仍可达到89%。通过液相色谱/质谱(LC/MS)技术测定光催化过程中产物的变化,提出了MoSe_2/Ag_3PO_4光催化降解RhB的途径。  相似文献   

17.
通过程序升温水热法制备了层级纳米花状结构Bi_2O_3/(BiO)_2CO_3复合材料(简称BO/BCO)。采用X射线衍射(XRD)、紫外-可见漫反射吸收光谱(UV-Vis/DRS)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和氮气吸附-脱附测定等方法对上述合成材料的晶型结构、组成、光吸收性质、形貌和表面物理化学性质进行了表征。结果表明,该复合材料中(BiO)_2CO_3的晶型为四方相,Bi_2O_3的晶型为单斜相,复合后的材料同时具有两者晶型结构。并且,合成时随着OH-的引入与反应时间的增加,复合材料中(BiO)_2CO_3的特征衍射峰强度逐渐降低,Bi_2O_3的特征衍射峰强度逐渐增加,证明了Bi_2O_3在样品中所占比例的增加。从UV-Vis/DRS吸收光谱分析结果显示,与单体(BiO)_2CO_3和单体Bi_2O_3相比,合成的BO/BCO复合材料的吸收边带发生偏移,且Bi_2O_3的引入有效增加其可见光区吸收。同时,样品由片状(BiO)_2CO_3生长为层级纳米花环状结构的BO/BCO-0.5,而层级结构的形成导致BO/BCO-0.5的带隙能变窄,且对于光电子的反射与散射发生改变,从而有利于光生电荷的转移与光的吸收效率。另外,以罗丹明B为模型分子,通过不同光源照射下的光催化活性实验,循环实验以及捕获实验对复合材料BO/BCO的光催化活性进行了研究。结果表明,与其他体系(单体Bi_2O_3和P25)相比,BO/BCO-0.5活性有明显提高,并且在多次循环实验后依然保持良好的稳定性。此外,根据捕获实验结果推测了BO/BCO复合材料可能的光催化反应机理。  相似文献   

18.
采用水热反应体系,结合离子交换法制备了多孔Ag_2S/ZnS纳米球,以甲基橙(MO)溶液为模拟污染物对其进行了可见光光催化降解研究.与ZnS相比,Ag_2S的加入提高了材料催化降解甲基橙的能力,其中Ag_(0.4)Zn_(0.8)S催化降解效果最好.光催化活性的增强主要归因于光诱导下ZnS和Ag_2S之间有效的界面电荷转移(IFCT).  相似文献   

19.
利用模板剂-浸渍法制备出了不同焙烧温度下的多孔复合材料TiO_2-Al_2O_3和Pd/Al_2O_3-TiO_2催化剂来催化氧化乙醇.样品经过XRD,FT-IR,孔结构分析、TEM、XPS、脉冲吸附、NH_3-TPD等进行表征分析.250℃焙烧的Pd/TiO_2-Al_2O_3催化剂具有最高的乙醇转化率和CO_2生成率.高比表面积、均匀分散的金属Pd颗粒和丰富的表面吸附氧是其具有高的催化活性的主要原因.  相似文献   

20.
采用一步水热合成法制备了BiPO_4、Ag_3PO_4和BiPO_4/Ag_3PO_4复合光催化剂,通过X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、紫外-可见漫反射(UV-Vis DRS)等表征手段对其组成结构、形貌及光吸收性质进行了表征,结果表明Ag_3PO_4呈块状结构,BiPO_4则分布在其表面,形成的BiPO_4/Ag_3PO_4复合光催化剂具有单斜相和立方晶相结构,带边吸收拓宽至571 nm。以甲基橙和加替沙星为目标污染物,考察了BiPO_4/Ag_3PO_4复合光催化剂在模拟太阳光照射下的降解矿化能力,结果表明复合催化剂比单一催化剂的降解矿化能力更强,稳定性更好。此外,自由基捕获实验表明空穴是该光催化过程中的主要活性物种,·O2-次之。p-n异质结的形成使BiPO_4/Ag_3PO_4复合光催化剂具有较强的电子空穴分离能力是光催化活性提高的主要原因,这与光电流和电化学阻抗谱测试结果相一致。基于以上结果,文中对BiPO_4/Ag_3PO_4光催化降解有机污染物的机理进行了推测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号