首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以水热方法制备具有多级纳米结构的In2S3空心微球. 通过对不同反应时间产物的跟踪表征, 证明微球中空结构的形成归因于Ostwald ripening机理. 空心微球的壳层由In2S3的纳米粒子或纳米片组成, In2S3空心球的紫外可见光谱蓝移以及荧光光谱在约385 nm的强发射和364 nm的弱发射, 均显示了纳米尺度In2S3晶体的量子局限效应. 以不同的氨基酸作为晶体生长修饰剂, 可以选择性地制备不同表面形貌的In2S3空心微球, 显示了氨基酸的不同功能团在In2S3晶体生长过程中对表面形貌的控制作用.  相似文献   

2.
A facile chemical conversion method has been demonstrated to prepare various metal sulfide hollow microspheres. The present strategy utilizes the large difference in solubility between ZnS and other metal sulfides (Ag2S, PbS, CuS, Cu2S, Bi2S3, and Sb2S3) for the effective transformation and shows mild growth conditions and good reproducibility. The morphology, structure, and composition of the yielded hollow nanostructures have been confirmed by transmission electron microscopy, energy-dispersive X-ray analysis, and X-ray diffraction measurements. The optical properties of the metal sulfide hollow microspheres have been systematically investigated by absorption, micro-Raman, and photoluminescence spectroscopy. The results demonstrate that these metal sulfide hollow microspheres possess good optical quality with tunable band gaps and luminescence properties, which indicate their broad potential applications. This simple chemical conversion technique can be further extended to the synthesis of other semiconductors with various morphologies.  相似文献   

3.
Well-defined olive-shaped Bi(2)S(3)/BiVO(4) microspheres were synthesized through a limited chemical conversion route (LCCR), where olive-shaped BiVO(4) microspheres and thioacetamide (TAA) were used as precursors and sulfur source, respectively. The as-synthesized products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission microscope (HRTEM), X-ray photoelectron spectra (XPS), UV-visible diffuse-reflectance spectroscopy (UV-vis DRS), and photoluminescence (PL) spectra in detail. Compared with pure BiVO(4) microspheres and Bi(2)S(3) nanorods, the Bi(2)S(3)/BiVO(4) products showed obviously enhanced photocatalytic activity for the degradation of rhodamine B (Rh B) in aqueous solution under visible-light irradiation (λ > 400 nm). In addition, the Bi(2)S(3)/BiVO(4) composite microspheres showed good visible-light-driven photocatalytic activity for the degradation of refractory oxytetracycline (OTC) as well. On the basis of UV-vis DRS, the calculated energy band positions, and PL spectra, the mechanism of enhanced photocatalytic activity of Bi(2)S(3)/BiVO(4) was proposed. The present study provides a new strategy to design composite materials with enhanced photocatalytic performance.  相似文献   

4.
Bismuth tungstate (Bi(2)WO(6)) has attracted great research interest as an important visible-light-responsive photocatalyst. In this paper, we report a facile hydrothermal route for the shape-controlled synthesis of micro/nanostructured Bi(2)WO(6), without adding surfactants or templates. The results show that various morphologies of Bi(2)WO(6) including coralloid spherical particles, packed nanosheets, fluffy microspheres, and plates can be obtained by adjusting the pH values of the precursors. The as-prepared porous fluffy microspheres with a hierarchical architecture synthesized at pH 8 exhibit the highest photocatalytic activity for the degradation of Rhodamine (RhB) under visible light irradiation. The photodegradation efficiency reaches as high as 99% within 20 min irradiation. This enhanced photocatalytic activity can be attributed to the unique porous structure and high BET surface area of fluffy microspheres with hierarchical architecture.  相似文献   

5.
The SiO2 coating of Bi2S3 nanofibers using the alkaline hydrolysis of Si(OEt)4 is reported. A comparative study on the optical and morphological properties of the starting Bi2S3 nanofibers and the final SiO2 coated nanomaterials are presented and discussed. A SiO2 cap covering homogeneously single Bi2S3 nanofibers was obtained when the hydrolysis of Si(OEt)4 was performed under sonication treatment to maintain the fibers well separated during the coating process. These coated nanofibers were then used in a layer-by-layer deposition process to produce multilayered nanostructured films.  相似文献   

6.
Li X  Huang R  Hu Y  Chen Y  Liu W  Yuan R  Li Z 《Inorganic chemistry》2012,51(11):6245-6250
Bi(2)WO(6) hollow microspheres with dimension of ca. 1.5 μm were synthesized via a hydrothermal method using polystyrene particles as the template. The as-prepared Bi(2)WO(6) hollow microspheres can be further transformed to double-shell Bi(2)O(3)/Bi(2)WO(6) hollow microspheres. The samples were fully characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, N(2)-sorption Brunauer-Emmett-Teller surface area, UV-vis diffuse-reflectance spectroscopy, and X-ray photoelectron spectroscopy. The as-formed double-shell Bi(2)O(3)/Bi(2)WO(6) hollow microspheres exhibit enhanced photocatalytic activity due to the hollow nature and formation of the p-n junction between p-type Bi(2)O(3) and n-type Bi(2)WO(6). The study provides a general and effective method in the fabrication of composition and dimension-tunable composite hollow microspheres with sound heterojunctions that may show a variety of applications.  相似文献   

7.
在不同咪唑基离子液体中, 利用微波辅助法快速合成了不同形貌的Bi2S3纳米粒子和Bi19Br3S27纳米棒. 利用XRD, TEM和SEM对合成产物进行了结构和形貌的表征. 实验结果表明离子液体在合成过程中对产物的相结构和形貌发挥了重要的作用. 实验中还进一步考察了不同实验条件对产物形貌的影响. 对实验的合成机理进行了初步探讨. 对不同形貌和纳米结构的Bi2S3和Bi19Br3S27进行了UV-Vis光谱分析.  相似文献   

8.
The size- and shape-controlled synthesis of Sb(2)S(3) nanostructures has been successfully realized by a facile hydrothermal route. A range of dimensional nanostructures, such as one-dimensional nanorods, two-dimensional nanowire bundles, three dimensional sheaf-like superstructures, dumbbell-shaped superstructures, and urchin-like microspheres, could be obtained through introducing different organic complex reagents or ionic liquids to the reaction system. The formation mechanisms of various Sb(2)S(3) nanostructures have been rationally proposed based on the crystal structure and the nature of the complex reagents and the ionic liquid. The effects of experimental parameters on the final product are also discussed in detail. In addition, electrochemical measurements demonstrate that the as-synthesized Sb(2)S(3) nanostructures have higher initial Li intercalation capacity and excellent cyclic performances, which indicates that the as-synthesized Sb(2)S(3) nanostructures could have potential applications in commercial batteries.  相似文献   

9.
A biomolecule-assisted simple technique has been developed for the spontaneous ordering of the Bi2S3 nanorods into snowflakelike superstructures in high yield under microwave-hydrothermal conditions. In this method, glutathione (GSH) is used as both an assembling agent and a sulfur source. By controlling the molar ratio between bismuth nitrate and glutathione as well as the synthetic temperature, several kinds of Bi2S3 one-dimensional nanomaterials such as snowflakelike structures, nanowires constructed of particles, short nanorods, and fine and long nanowires have been controllably synthesized.  相似文献   

10.
在N2气保护下,采用电磁感应法制备了添加La的Bi2Te3和Bi0.5Sb1.5Te3。运用X射线粉末衍射、电感耦合等离子光谱和扫描电子显微镜对材料的物相成分和形貌进行了表征。研究了La对Bi2Te3和Bi0.5Sb1.5Te3热电材料的电导率(σ)、Seebeck系数(S)和热导率(κ)的影响。实验结果表明,添加La明显降低了2种材料的热导率,提高了热电优值(ZT),添加La的Bi0.5Sb1.5Te3的热电优值在室温超过了1。  相似文献   

11.
Novel template-free hierarchical-like In(2)S(3) hollow microspheres were synthesized using thiosemicarbazide (NH(2)NHCSNH(2)) as both a sulfur source and a capping ligand in a ethanol/water system. In this study, we demonstrate that several process parameters, such as the reaction time and precursor ratio, strongly influence the morphology of the final product. The In(NO(3))(3)/thiosemicarbazide ratios were found to effectively play crucial roles in the morphologies of the hierarchical-like In(2)S(3) hollow microsphere nanostructure. With the ratios increasing from two to four, the In(2)S(3) crystals exhibited almost spherical morphologies. The synthesized products have been characterized by a variety of methods, including X-ray powder diffraction (XRD), Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffused reflectance spectroscopy (UV-vis DRS). XRD analysis confirmed the tetragonal structure of the In(2)S(3) hollow microspheres. The products show complex hierarchical structures assembled from nanoscale building blocks. The morphology evolution can be realized on both outside (surface) and inside (hollow cavity) the microsphere. The surface area analysis showed that the porous In(2)S(3) possesses a specific surface area of 108 m(2)/g and uniform distribution of pore sizes corresponding to the size of pores resulting from the self-assembled structures with flakes. The optical properties of In(2)S(3) were also investigated by UV-vis DRS, which indicated that our In(2)S(3) microsphere samples possess a band gap of ~1.96 eV. Furthermore, the photocatalytic activity studies revealed that the synthesized In(2)S(3) hollow microspheres exhibit an excellent photocatalytic performance in rapidly degrading aqueous methylene blue dye solution under visible light irradiation. These results suggest that In(2)S(3) hollow microspheres will be an interesting candidate for photocatalytic detoxification studies under visible light radiation.  相似文献   

12.
采用水热法和高温煅烧法制备出了3种纯相(α,γ和β)的三维海胆状结构的MnO2微球,并系统地研究了它们的氧还原反应(ORR)性能。研究结果表明,3种MnO2微球的ORR活性依次为:α-MnO2>γ-MnO2>β-MnO2。α-MnO2微球具有最优的ORR性能,其起始电位为0.92 V(vs RHE),在电流密度为-3 mA·cm^-2处的电位为0.77 V(vs RHE)。α-MnO2微球优异的ORR活性主要归因于其具有更多的表面Mn3+和氧空位和更好的导电性。  相似文献   

13.
TiO2 hollow microspheres with sea urchin-like hierarchical architectures were synthesized by a simple hydrothermal method. The as-synthesized hollow microspheres with hierarchical architectures consisting of many rhombic building units exhibit high specific surface area. Electrorheological (ER) properties of hierarchical hollow TiO2-based suspension were investigated under steady and oscillatory shear. The hollow TiO2-based suspensions show much higher yield stress and elasticity than pure TiO2 suspension at the same electric field strength. This phenomenon was elucidated well in view of their dielectric spectra analysis. The sea urchin-like architectures result in stronger interfacial polarization of hollow TiO2 suspension upon an electric field, showing higher ER activity. Also, hollow interiors of TiO2 particles increase the long-term stability of suspensions and further merit the ER effect.  相似文献   

14.
Novel Bi/BiOBr/AgBr composite microspheres were prepared by a rational in situ ion exchange reaction between Bi/BiOBr microspheres and AgNO3. The characteristic of the as-obtained ternary microspheres was tested by X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (UV–vis DRS) and photoluminescence (PL). Under visible light irradiation, Bi/BiOBr/AgBr microspheres exhibited an excellent photocatalytic efficiency for rhodamine B (RhB) degradation, which was about 1.4 and 4.9 times as high as that of Bi/BiOBr and BiOBr/AgBr, demonstrating that the highest separation efficiency of charge carriers in the heterostructured Bi/BiOBr/AgBr. The photocatalytic activity of Bi/BiOBr/AgBr microspheres just exhibited a slight decrease after three consecutive cycles. The photocatalytic mechanism investigation confirmed that the superoxide radicals (O2•−) were the dominant reactive oxygen species for RhB degradation in Bi/BiOBr/AgBr suspension.  相似文献   

15.
Bi2S3 flowerlike patterns with well-aligned nanorods were synthesized using a facile solution-phase biomolecule-assisted approach in the presence of L-cysteine (an ordinary and cheap amino acid), which turned out to serve as both the S source and the directing molecule in the formation of bismuth sulfide nanostructures. Emphatically, no nauseous scent (H2S) appeared in our experiments, which could not be avoided in other previous reports. The morphology, structure, and phase composition of the as-prepared Bi2S3 products were characterized using various techniques (scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, selected area electron diffraction, and high-resolution transmission electron microscopy). The formation mechanism for the bismuth sulfide flowerlike assemblies with well-arranged nanorods was also discussed. In addition, other Bi2S3 homogeneous nanostructures (e.g., networklike nanoflakes, nanorod-based bundles, and nanoflakes) were obtained through varying the experimental parameters. Interestingly, we have found that these synthesized bismuth sulfide nanostructures using the biomoleucle-assisted approach could electrochemically charge and discharge with the capacity of 142 (mA h)/g (corresponding to 0.51 wt % hydrogen in single-walled carbon nanotubes) under normal atmosphere at room temperature. A novel two-plateau phenomenon was observed in the synthesized Bi2S3 nanostructures, suggesting that there were two independent steps in the charging process. It has been demonstrated that the bismuth sulfide's morphology and the constant charge-discharge current density had a noticeable influence on their capacity of electrochemical hydrogen storage. These differences in hydrogen storage capacity are likely due to the size and density of space/pores as well as the morphology of different Bi2S3 nanostructures. The novel Bi2S3 nanomaterials may find potential applications in hydrogen storage, high-energy batteries, luminescence, optoelectronic and catalytic fields, as well as in the studies of structure-property relationships. This facile, environmentally benign, and solution-phase biomolecule-assisted method can be potentially extended to the preparation of other metal chalcogenides including FeS, CuS, NiS, PbS, MnS, and CoS nanostructures.  相似文献   

16.
Manganese dioxides with various morphologies were prepared using a common hydrothermalmethod without any templates or additives. The evolution of the morphology was accompanied by the gradual conversion of the polymorphic forms from γ-type to β-type. Meanwhile, MnO2 microspheres, urchin-like nanostructures and nanowires were successfully synthesized. The products were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope. The evolution process can be explained by the Ostwald Ripening mechanism. __________ Translated from Chinese Journal of Chinese Universities 28(7): 1223–1226 [译自: 高等学校化学学报]  相似文献   

17.
Hollow ZnS and ZnO architectures are fabricated by employing Zn(5)(CO(3))(2)(OH)(6) microspheres as the sacrificial template. Zn(5)(CO(3))(2)(OH)(6) microspheres can be effectively converted into the core/shell structured ZnO/ZnS composites (in the Na(2)S solution) and hollow ZnO architectures (in the KOH solution), by a spontaneous ion replacement reaction at room temperature. Removing the core by the KOH treatment of core/shell structured ZnO/ZnS, hollow ZnS spheres with different shell thicknesses can be effectively achieved. The obtained hollow ZnO architectures exhibit unique geometrical shapes, and their walls are composed of nanocrystals, which are connected to each other to form their hemispherical or circular shape. A possible formation process from Zn(5)(CO(3))(2)(OH)(6) microspheres to core/shell structured ZnO/ZnS composites is proposed by arresting a series of intermediate morphologies.  相似文献   

18.
An anion exchange strategy is explored to synthesize Bi(2)WO(6) hollow microspheres based on the microscale Kirkendall effect. The as-prepared Bi(2)WO(6) hollow microspheres display high CO(2) adsorption capacity and visible light photocatalytic conversion efficiency of CO(2) into methanol without the aid of any co-catalyst.  相似文献   

19.
不同形貌纳米SnO2的可控合成及催化发光传感器   总被引:1,自引:0,他引:1  
本文以碳纳米管(CNT)为模板、采用液相沉积法、通过改变煅烧温度可控合成了SnO2-CNT复合纳米材料、SnO2纳米棒、SnO2纳米粒子等3种形貌的SnO2纳米材料,研究了3种形貌的SnO2纳米材料对乙酸乙酯催化发光的影响;通过考察3种不同形貌SnO2纳米材料的纳米尺度和结构,讨论了影响纳米材料催化发光特性的因素;研究了3种不同形貌SnO2纳米材料对乙酸乙酯催化发光图谱和强度的变化,建立了3种新型、高效的不同形貌纳米催化发光传感器。  相似文献   

20.
Polycrystalline microspheres and single-crystalline microplates of Bi(2)WO(6) have been synthesized by ultrasonic spray pyrolysis. Herein, these materials are evaluated as photocatalysts for the visible light mediated degradation of rhodamine B, a model pollutant, and the results compared to those obtained with Bi(2)WO(6) prepared by traditional methods. The microplates, which displayed the best crystallinity and highest surface area, were anticipated to facilitate the greatest rate of dye photodegradation. However, the polycrystalline microspheres outperformed both the Bi(2)WO(6) microplates and traditional samples. To understand the origin of this result, the local and macroscale structures of the Bi(2)WO(6) samples were comprehensively characterized by spectroscopy techniques (diffuse reflectance, fluorescence, Raman, and X-ray photoelectron spectroscopy) as well as electron microscopy and diffraction. This analysis found that the enhanced performance of the Bi(2)WO(6) microspheres results from the expression of a hydrophilic surface, a low concentration of point defects, and a moderate surface area. This finding highlights the significant role synthesis plays in imparting structure and functionality to solid materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号