首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
锰氧化物是一类重要的且具有广泛应用背景的材料,控制合成不同形貌和组成的锰氧化物纳米结构将有助于拓宽其应用领域.本文报道了以Mn3O4为前驱体,通过水热法控制合成MnO2纳米结构的方法.用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等手段对产物进行表征.在硫酸体系中,当反应温度为80和180℃时,所得产物分别为γ-MnO2海胆结构和β-MnO2单晶纳米棒.此外,MnOOH纳米线可以在稀酸溶液中合成.考察了反应温度、溶液酸度、反应时间对产物结构的影响,并提出了基于γ-MnO2为中间产物的反应机理.实验结果表明,水热体系促进了产物的各向异性生长并最终形成不同形貌和结构的锰氧化物.  相似文献   

2.
纳米结构MnO2的水热合成、晶型及形貌演化   总被引:2,自引:1,他引:2  
以水热合成方法制备了具有不同微观形貌的纳米结构MnO2, 并以X射线衍射(XRD), 扫描电镜(SEM)和X射线光电子能谱(XPS)等方法对其进行了表征. 跟踪考察了二氧化锰的晶型及微观形貌随水热反应时间的演变过程, 在Ostwald ripening机理作用下, MnO2晶型转化过程为γ-MnO2, α-MnO2和β-MnO2, 同时形貌由微米球转变为海胆结构、空心海胆结构和纳米线.  相似文献   

3.
系列纳米结构锰氧化物的水热合成   总被引:2,自引:0,他引:2  
以KMnO4为锰源、抗坏血酸(AA)为还原剂,采用水热法制备系列纳米结构锰氧化物。通过调节反应物的物质的量的比、水溶液的pH值、反应温度和反应时间,制备出了不同纳米结构的锰氧化物,包括Mn3O4纳米粒子、MnOOH、α-MnO2和β-MnO2纳米棒。采用XRD和TEM测试技术对合成产物进行了表征,同时对其反应机理进行了探讨。  相似文献   

4.
朱家艺  贺军辉 《化学学报》2010,68(10):961-968
通过改变反应物物质的量比、分散相与连续相体积比、反应体系温度和煅烧后处理温度,研究了反应条件对乳液法自组装合成氧化锰纳米粒子结构、形貌和尺寸的影响.结果表明:当高锰酸钾与油酸物质的量比在1∶5~1∶1之间时,形成蜂窝状纳米粒子和空心纳米粒子;当分散相(油酸)与连续相(水)的体积比为4∶200时,形成良好的空心球纳米结构;反应体系温度升高不利于产物的洗涤;不同温度的煅烧后处理不仅影响氧化锰纳米粒子的形貌,而且影响其结晶度和晶型.  相似文献   

5.
通过简单的水热方法分别在150 ℃和220 ℃选择控制合成了单晶α-MnO2和β-MnO2纳米棒. 并用扫描电镜(SEM)、透射电镜(TEM)、能谱元素分析(EDX)、粉末X射线衍射(XRD)对产物进行了表征. 结果表明, 在水热反应过程中, 温度在控制合成α-MnO2和β-MnO2纳米棒中起到重要作用  相似文献   

6.
采用水 (溶液 ) /TritonX 10 0 /环已烷 /正戊醇反相胶束体系 ,制备出不同形貌的Ag2 S纳米晶 ,其中合成出的直径为 5 0~ 10 0nm、长度为 2 .0~ 3.5 μm、长径比为 2 0~ 70的纯相Ag2 S纳米棒为首次报导 .就不同ω0 、反应物浓度和陈化时间等因素对合成Ag2 S的形貌和尺寸的影响进行了研究 ,获得了控制合成不同形貌Ag2 S纳米晶的反应条件 .所得产物利用透射电子显微镜分析进行了表征  相似文献   

7.
以介孔氧化硅材料MCM-41为模板,硝酸锰为锰源,通过浸渍、450℃焙烧4 h得到Mn-MCM-41,用NaOH溶液溶解除去氧化硅模板得到锰氧化物,采用XRD,HRTEM和N2吸附-脱附等测试技术对产物进行了表征.结果表明,所得产物是纯相的β-MnO2纳米纤维,直径小于3 nm.纳米纤维之间有序排列组成类似MCM-41模板的介孔结构,其比表面积达到136.5 m2/g.将所制备的β-MnO2纳米纤维用于催化过氧化氢氧化分解质量浓度为60 mg/L的亚甲基蓝(MB)模拟染料废水,经100 min反应后,亚甲基蓝水溶液脱色率达到97.59%.所制备的催化剂对降解处理高浓度亚甲基蓝溶液,具有降解脱色率高和反应速度快等优点.  相似文献   

8.
反相微乳液法制备纳米氧化铝   总被引:4,自引:0,他引:4  
采用由环己烷、聚乙二醇辛基苯基醚(TritonX-100)、正丁醇与水溶液构成的反相微乳液体系, 合成了纳米Al2O3粉体. 采用X射线衍射、扫描电子显微镜、透射电子显微镜、比表面积分析仪等表征手段, 分别对产物的结构、形貌、比表面积和孔容进行了表征, 该纳米Al2O3比表面积约450 m2·g-1(随反应参数不同发生变化), 均属γ-Al2O3, 粒径均匀, 颗粒直径小于10 nm. 考察了微乳液体系中水与表面活性剂的物质的量之比r0、表面活性剂与助表面活性剂的体积比φ、焙烧温度等关键因素对产物比表面积等物理性质的影响. 结果表明, 当r0=20, φ=0.5, 焙烧温度为500 ℃时, 可以得到大比表面积、高孔容、分散性好及粒径分布均匀的γ-Al2O3粉体.  相似文献   

9.
CuO纳米结构阵列的简易合成及其光催化性质   总被引:3,自引:0,他引:3  
利用一种简便的一步反应路线, 通过调节反应温度, 选择性地合成出两种有序排列的氧化铜纳米阵列, 即成束的一维(1D)纳米带和紧密排列的二维(2D)纳米片. 系统研究了产物的物相和形貌随反应时间的演变情况, 结果表明两种氧化铜纳米结构阵列分别是通过氧化→生长→脱水和氧化→脱水→生长过程形成的, 其中动力学因素控制的成核与生长过程决定了氧化铜纳米结构的最终形貌. 模拟太阳光辐射光催化降解有机染料罗丹明B(RhB), 测试了所制备的氧化铜纳米结构阵列的光催化活性. 本工作为制备新颖的多级纳米结构材料提供了一种简单且经济的合成路线, 这些纳米材料将在多个领域体现出重要的应用潜力.  相似文献   

10.
ZnO纳米环的可控合成   总被引:1,自引:0,他引:1  
以六次甲基四胺(Hexamethylenetetramine, C6H12N4)和水合硝酸锌[Zn(NO3)2·2H2O]为原料, 表面活性剂聚丙烯酰胺-氯化二烯丙基二甲基铵[poly(acrylamide-co-diallyldimethylammonium chloride, 缩写为PAM-CTAC]为形貌控制剂, 采用液相沉淀法合成了ZnO纳米环. 产物的结构与形貌经X射线粉末衍射(XRD)和扫描电子显微镜(SEM)表征. 研究了不同实验条件(如表面活性剂的浓度、反应物浓度、反应温度和反应时间等)对产物形貌与尺寸的影响. 讨论了PAM-CTAC作用下ZnO纳米环可能的形成机理. 结果表明, 合成产物为六方Wurtzite型结构的ZnO纳米环, 环内径约为220 nm, 壁厚约为70 nm. 反应物浓度、反应温度对ZnO纳米环的形成以及纳米环的尺寸都有一定的影响, 但起关键作用的是PAM-CTAC. 通过改变PAM-CTAC的浓度, 能有效地实现ZnO纳米环的可控合成. 室温荧光光谱显示, ZnO纳米环的紫外发射峰具有较窄的半高宽(FWHM)(约7 nm), 表明合成产物具有较窄的尺寸分布.  相似文献   

11.
通过水热法合成了纯相的α-MnO2和δ-MnO2纳米棒,并利用溶胶固定化工艺制备了负载铂纳米颗粒的Pt/MnO2材料.通过透射电镜(TEM),X射线粉末衍射(XRD),扫描电镜(SEM),X射线光电子能谱(XPS),N2吸附-脱附和H2程序升温还原(H2-TPR)技术研究了样品的微观结构和吸附活性位,探查了CO和挥发性有机化合物(VOCs)(苯和甲苯)在催化剂上的催化发光(CTL)性质.结果表明:铂颗粒在α-MnO2和δ-MnO2载体上以高分散状态存在,负载过程不会影响α-MnO2纳米棒的晶相结构,但会导致δ-MnO2纳米棒产生结构变化.经XPS证实不是Pt与其发生了反应.α-和δ-MnO2纳米棒对CO、苯和甲苯的催化氧化都具有很高的活性,δ-MnO2的活性略高于α-MnO2相.虽然N2吸附-脱附实验结果证实Pt负载会导致MnO2纳米棒比表面积的下降,但H2-TPR结果显示Pt和MnO2之间会产生强烈的相互作用,显著增强其催化活性,且Pt/δ-MnO2活性高于Pt/α-MnO2.催化氧化发光研究表明,这四种催化剂活性顺序是α-MnO2≤δ-MnO2相似文献   

12.
Birnessite flower-like and α-type tubular MnO(2) nanostructures were selectively synthesized through simple decomposition of KMnO(4) under hydrochloric acid condition by controlling reaction temperature using a microwave-assisted hydrothermal method. The as-prepared samples were characterized in detail by various techniques including X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, Fourier transform-infrared spectroscopy, and Raman scattering spectroscopy. While the growth of flower-like birnessite-MnO(2) might follow a widely accepted Ostwald ripening process, we proposed a formation mechanism of the nanotubular α-MnO(2) based on our evidence, which was assembly of nanorods through an "oriented attachment" process.  相似文献   

13.
采用水热法合成了两种具有相同形貌但是不同物相结构的MnO2纳米棒, 分别为隧道状和层状结构, 考察其低温NH3选择性催化还原NOx (NH3-SCR)的性能. 结果表明MnO2纳米棒的比表面积不是影响活性的主要因素, 催化剂的晶相结构和表面性质对催化活性有很大影响, 隧道状α-MnO2纳米棒的低温NH3-SCR活性明显高于层状δ-MnO2纳米棒. 结构分析和NH3程序升温脱附(NH3-TPD)实验表明, α-MnO2纳米棒的暴露晶面(110)面存在大量的配位不饱和Mn离子, 形成较多的Lewis 酸性位点, 而且α-MnO2较弱的Mn―O键和隧道结构都有利于NH3的吸附; 而δ-MnO2纳米棒的暴露晶面(001)面上的Mn离子已达到配位饱和, 所以其表面Lewis 酸性位点较少. X射线光电子能谱(XPS)和热重(TG)分析表明α-MnO2纳米棒的表面更有利于NH3和NOx的活化. 具有有利于吸附NH3和活化NH3和NOx的表面性质和晶型结构, 是α-MnO2纳米棒活性高的主要原因.  相似文献   

14.
孔状Co_3O_4纳米片和纳米棒的选择性合成和表征(英文)   总被引:1,自引:0,他引:1  
利用两步实验选择性合成孔状Co3O4纳米片和纳米棒:首先,以Co(NO3)2·6H2O,NaOH和不同量的NH4F为原料在120℃水热6h的条件下合成了Co(OH)2-Co3O4纳米片(S1)和Co(OH)F-Co3O4纳米棒(S2);然后将所得纳米片和纳米棒在400℃时加热2h即得到多孔的Co3O4纳米片和纳米棒。所得产物用X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)和透射电子显微镜(TEM)进行了表征。此外电化学测试表明Co3O4纳米棒的电容量比Co3O4纳米片的更大。  相似文献   

15.
以十六烷基三甲基溴化铵(CTAB)作为表面活性剂,利用水热合成法在180℃条件下成功制备出WS2纳米棒。用XRD、SEM、TEM和HRTEM对WS2纳米棒的结构进行表征和分析,并提出了可能的生长机理。将WS2作为润滑油添加剂加到基础油中,用CETR UMT-2摩擦磨损仪测试其摩擦学性能。结果表明:WS2纳米棒作为润滑油添加剂表现出良好的摩擦性能。  相似文献   

16.
为了探究催化剂的结构和催化活性的关系,采用水热法制备了四种不同晶体结构的MnO2纳米催化剂(α-MnO2、β-MnO2、γ-MnO2和δ-MnO2),并考察了其低温NH3-SCR活性。结果表明,不同晶体结构催化剂的活性不同,依次为γ-MnO2 > α-MnO2 > β-MnO2 > δ-MnO2,γ-MnO2表现出最高的催化活性,NOx转化率在150-260℃超过90%。随后,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、N2吸附-脱附、热重(TG)、红外光谱(FT-IR)、程序升温还原(H2-TPR)及吡啶吸附红外光谱(Py-FTIR)等表征手段对催化剂的结构和性质进行分析。结果表明,α-MnO2和β-MnO2为纳米棒,γ-MnO2和δ-MnO2为纳米针,催化剂的比表面积并不是影响低温NH3-SCR活性的主导因素。γ-MnO2具有适宜的孔道结构、较强的氧化还原能力、丰富的化学氧含量和Lewis酸酸性位点,是其具有最高低温NH3-SCR活性的原因。  相似文献   

17.
以KMnO4、氧化石墨(GO)和硫酸为原料,在120℃水热条件下3 h成功合成了直径为10~20 nm,长度为300~400 nm的α-MnO2纳米棒。研究发现GO的引入降低了纳米棒的制备温度,缩短了反应时间。电化学测试结果表明,在1 mol.L-1Na2SO4中性水系电解液中,该纳米棒表现出良好的电容性能,当扫描速率分别为2 mV.s-1和5 mV.s-1时,比电容分别为276 F.g-1和240F.g-1;该纳米材料是一种潜在的电化学电容器电极材料。  相似文献   

18.
负载型Nb2O5是多种催化反应的有效催化剂. 以草酸铌为前驱物, γ-Al2O3为载体, 通过浸渍法制备不同负载量的Nb2O5/γ-Al2O3催化剂. 采用粉末X射线衍射(XRD)、激光拉曼光谱(LRS)和吡啶吸附傅立叶变换红外(Py-IR)光谱方法对催化剂表面铌氧(NbOx)物种的分散特征、酸性特征进行表征, 通过异丁烯(IB)与异丁醛(IBA)缩合生成2,5-二甲基-2,4-己二烯(DMHD)反应评价催化剂表面酸催化活性. 结果表明, Nb在γ-Al2O3表面的单层分散容量(ΓNb)为7.6 μmol·m-2, 与“嵌入模型”理论分析Nb5+分散在γ-Al2O3优先暴露晶面(110)上八面体空位中的单层分散容量值7.5 μmol·m-2接近, 即分散的Nb5+离子键合在γ-Al2O3表面八面体空位中. 在低负载量下, 分散在γ-Al2O3表面的Nb2O5主要以孤立的NbOx物种形式通过Nb—O—Al键与载体表面键合, 与LRS结果一致. 处于孤立状态下的NbOx物种使表面Lewis 酸位量下降. 随负载量的增加, 孤立的NbOx物种通过Nb—O—Nb键连接而聚集, 并形成表面Bronsted酸位, 随着NbOx聚集度增加, 表面Bronsted 酸密度增加, 酸性增强, 对IBA与IB缩合反应催化活性增加. 当负载量超过单层分散容量时, NbOx物种呈现三维聚集状态, DMHD的转化频率(TOF)降低, 同时表面Bronsted 酸性增强, 导致目标产物DMHD 的选择性降低. Nb2O5/γ-Al2O3催化剂表面Bronsted 酸特征与NbOx物种聚集状态密切相关.  相似文献   

19.
Metal cations as well as water are important factors to control the synthesis of MnO2 crystal nanostructures. In this work, systemic Density functional theory calculations aboutα,β,δ-MnO2 are presented to show the importance of metal cations and water for the structure stability and energy stability of MnO2. It is shown that the α-MnO2 crystal and its (110) surface will crash without the tunnel cations such as K+, and the distance between the layers of the δ-MnO2 will be significantly lower than that of the experimental results without the interlayer metal cations and water. At the same time, α-MnO2 and δ-MnO2 can be more stable than β-MnO2 with metal cations and water, and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号